Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 24-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article studies the dynamic modes of the fractional Selkov system with variable heredity (memory). The effect of variable heredity means that heredity changes over time, i.e. the dependence of the current state of the system on the previous ones also depends on time. Variable heredity in the fractional Selkov system is described from the mathematical point of view using derivatives of fractional variables of the Gerasimov-Caputo type. The fractional dynamic Selkov system is studied using the Adams-Bashforth-Multon numerical method from the predictor-corrector family. Using the numerical algorithm, various bifurcation diagrams are constructed — dependences of the obtained numerical solution on various values of the parameters of the model equations. The Adams-Bashforth-Multon numerical algorithm and the construction of bifurcation diagrams were implemented in Python in the PyCharm 2024.1 environment. The study of bifurcation diagrams showed the presence of not only regular regimes: limit cycles and damped oscillations and chaotic oscillations, but also revealed a singularity — unlimited growth of the solution when changing the values of the orders of fractional derivatives in the model equation. Biffurcation diagrams may contain curve sections with and without spikes. Spikes may indicate relaxation oscillations or chaotic modes, the absence of spikes corresponds to damped oscillations or aperiodic modes
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mathematical modeling, fractional dynamic Selkov system, phase trajectory, bifurcation diagrams, statistical characteristics, fractional derivatives of variable order, hereditary, Python, PyCharm.
Mots-clés : oscillogram
                    
                  
                
                
                Mots-clés : oscillogram
@article{VKAM_2024_49_4_a1,
     author = {R. I. Parovik},
     title = {Study of bifurcation diagrams of {Selkov's} fractional dynamic system to describe self-oscillatory modes of microseisms},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {24--35},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/}
}
                      
                      
                    TY - JOUR AU - R. I. Parovik TI - Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 24 EP - 35 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/ LA - ru ID - VKAM_2024_49_4_a1 ER -
%0 Journal Article %A R. I. Parovik %T Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 24-35 %V 49 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/ %G ru %F VKAM_2024_49_4_a1
R. I. Parovik. Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 24-35. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/
