Mots-clés : oscillogram
@article{VKAM_2024_49_4_a1,
author = {R. I. Parovik},
title = {Study of bifurcation diagrams of {Selkov's} fractional dynamic system to describe self-oscillatory modes of microseisms},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {24--35},
year = {2024},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/}
}
TY - JOUR AU - R. I. Parovik TI - Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 24 EP - 35 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/ LA - ru ID - VKAM_2024_49_4_a1 ER -
%0 Journal Article %A R. I. Parovik %T Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 24-35 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/ %G ru %F VKAM_2024_49_4_a1
R. I. Parovik. Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 24-35. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/
[1] Selkov E. E., “Self-oscillations in glycolysis. I. A simple kinetic model”, Eur. J. Biochem., 1968, no. 4, 79–86 | DOI
[2] Makovetskii V. I., Dudchenko I. P., Zakupin A. S., “Avtokolebatelnaya model istochnikov mikroseism”, Geosistemy perekhodnykh zon, 2017, no. 4(1), 37–46
[3] Parovik R.I., “Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms”, Mathematics, 10:22 (2022), 4208 DOI: 10.3390/math10224208 | DOI
[4] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR
[5] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[6] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[7] Parovik R.I., “Issledovanie drobnoi dinamicheskoi sistemy Selkova”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 41:4 (2022), 146–166 DOI: 10.26117/2079-6641-2022-41-4-146-166 | MR | Zbl
[8] Parovik R. I., “Selkov Dynamic System with Variable Heredity for Describing Microseismic Regimes”, Solar-Terrestrial Relations and Physics of Earthquake Precursors, Proceedings of the XIII International Conference, Paratunka,, Springer Nature Switzerland AG, Cham, Switzerland:, 2023, 166-178 DOI:10.1007/978-3-031-50248-4_18 | DOI
[9] Parovik R. I., “Kachestvennyi analiz drobnoi dinamicheskoi sistemy Selkova s peremennoi pamyatyu s pomoschyu modifitsirovannogo algoritma Test 0-1”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 45:4 (2023), 9-23 . DOI: 10.26117/2079-6641-2023-45-4-9-23 | DOI | MR | Zbl
[10] Gerasimov A. N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78
[11] Caputo M., “Linear models of dissipation whose Q is almost frequency independent - II”, Geophysical Journal International, 13 (1967), 529-539 | DOI
[12] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: A review”, Proc. R. Soc. A R. Soc. Publ., 2020, no. 476, 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR | Zbl
[13] Diethelm K., Ford N. J., Freed A. D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dynamics, 29:1-4 (2002), 3-22 DOI: 10.1023/A:1016592219341 | DOI | MR | Zbl
[14] Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional order dynamical control system”, ANZIAM Journal, 47 (2005), 168-184 DOI: 10.21914/anziamj.v47i0.1037 | DOI | MR
[15] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI: 10.3390/math6020016 | DOI
[16] Parovik R.I., ABMSelkovFracSim – programmnyi kompleks dlya kachestvennogo i kolichestvennogo analiza drobnoi dinamicheskoi sistemy Selkova., Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM # 2024681529 RF., 2024
[17] Shaw Z. A., Learn Python the Hard Way, Addison-Wesley Professional, 2024, 306 pp.
[18] Van Horn B. M. II, Nguyen Q., Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool, Packt Publishing Ltd., Birmingham, UK, 2023
[19] Bao B. et al., “Memristor-induced mode transitions and extreme multistability in a map-based neuron model”, Nonlinear Dynamics, 111:4 (2023), 3765-3779 DOI: 10.1007/s11071-022-07981-8 | DOI
[20] Colbrook M. J. et al., “Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems”, Nonlinear Dynamics, 112:3 (2024), 2037-2061 DOI: 10.1007/s11071-023-09135-w | DOI