Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 24-35
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article studies the dynamic modes of the fractional Selkov system with variable heredity (memory). The effect of variable heredity means that heredity changes over time, i.e. the dependence of the current state of the system on the previous ones also depends on time. Variable heredity in the fractional Selkov system is described from the mathematical point of view using derivatives of fractional variables of the Gerasimov-Caputo type. The fractional dynamic Selkov system is studied using the Adams-Bashforth-Multon numerical method from the predictor-corrector family. Using the numerical algorithm, various bifurcation diagrams are constructed — dependences of the obtained numerical solution on various values of the parameters of the model equations. The Adams-Bashforth-Multon numerical algorithm and the construction of bifurcation diagrams were implemented in Python in the PyCharm 2024.1 environment. The study of bifurcation diagrams showed the presence of not only regular regimes: limit cycles and damped oscillations and chaotic oscillations, but also revealed a singularity — unlimited growth of the solution when changing the values of the orders of fractional derivatives in the model equation. Biffurcation diagrams may contain curve sections with and without spikes. Spikes may indicate relaxation oscillations or chaotic modes, the absence of spikes corresponds to damped oscillations or aperiodic modes
Keywords: mathematical modeling, fractional dynamic Selkov system, phase trajectory, bifurcation diagrams, statistical characteristics, fractional derivatives of variable order, hereditary, Python, PyCharm.
Mots-clés : oscillogram
@article{VKAM_2024_49_4_a1,
     author = {R. I. Parovik},
     title = {Study of bifurcation diagrams of {Selkov's} fractional dynamic system to describe self-oscillatory modes of microseisms},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {24--35},
     year = {2024},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 24
EP  - 35
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/
LA  - ru
ID  - VKAM_2024_49_4_a1
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 24-35
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/
%G ru
%F VKAM_2024_49_4_a1
R. I. Parovik. Study of bifurcation diagrams of Selkov's fractional dynamic system to describe self-oscillatory modes of microseisms. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 24-35. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a1/

[1] Selkov E. E., “Self-oscillations in glycolysis. I. A simple kinetic model”, Eur. J. Biochem., 1968, no. 4, 79–86 | DOI

[2] Makovetskii V. I., Dudchenko I. P., Zakupin A. S., “Avtokolebatelnaya model istochnikov mikroseism”, Geosistemy perekhodnykh zon, 2017, no. 4(1), 37–46

[3] Parovik R.I., “Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms”, Mathematics, 10:22 (2022), 4208 DOI: 10.3390/math10224208 | DOI

[4] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[5] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[6] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[7] Parovik R.I., “Issledovanie drobnoi dinamicheskoi sistemy Selkova”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 41:4 (2022), 146–166 DOI: 10.26117/2079-6641-2022-41-4-146-166 | MR | Zbl

[8] Parovik R. I., “Selkov Dynamic System with Variable Heredity for Describing Microseismic Regimes”, Solar-Terrestrial Relations and Physics of Earthquake Precursors, Proceedings of the XIII International Conference, Paratunka,, Springer Nature Switzerland AG, Cham, Switzerland:, 2023, 166-178 DOI:10.1007/978-3-031-50248-4_18 | DOI

[9] Parovik R. I., “Kachestvennyi analiz drobnoi dinamicheskoi sistemy Selkova s peremennoi pamyatyu s pomoschyu modifitsirovannogo algoritma Test 0-1”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 45:4 (2023), 9-23 . DOI: 10.26117/2079-6641-2023-45-4-9-23 | DOI | MR | Zbl

[10] Gerasimov A. N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78

[11] Caputo M., “Linear models of dissipation whose Q is almost frequency independent - II”, Geophysical Journal International, 13 (1967), 529-539 | DOI

[12] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: A review”, Proc. R. Soc. A R. Soc. Publ., 2020, no. 476, 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR | Zbl

[13] Diethelm K., Ford N. J., Freed A. D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dynamics, 29:1-4 (2002), 3-22 DOI: 10.1023/A:1016592219341 | DOI | MR | Zbl

[14] Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional order dynamical control system”, ANZIAM Journal, 47 (2005), 168-184 DOI: 10.21914/anziamj.v47i0.1037 | DOI | MR

[15] Garrappa R., “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 016 DOI: 10.3390/math6020016 | DOI

[16] Parovik R.I., ABMSelkovFracSim – programmnyi kompleks dlya kachestvennogo i kolichestvennogo analiza drobnoi dinamicheskoi sistemy Selkova., Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM # 2024681529 RF., 2024

[17] Shaw Z. A., Learn Python the Hard Way, Addison-Wesley Professional, 2024, 306 pp.

[18] Van Horn B. M. II, Nguyen Q., Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool, Packt Publishing Ltd., Birmingham, UK, 2023

[19] Bao B. et al., “Memristor-induced mode transitions and extreme multistability in a map-based neuron model”, Nonlinear Dynamics, 111:4 (2023), 3765-3779 DOI: 10.1007/s11071-022-07981-8 | DOI

[20] Colbrook M. J. et al., “Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems”, Nonlinear Dynamics, 112:3 (2024), 2037-2061 DOI: 10.1007/s11071-023-09135-w | DOI