Mots-clés : lidar.
@article{VKAM_2024_47_2_a5,
author = {V. N. Marichev and D. A. Bochkovsky and A. I. Elizarov},
title = {Generalization of the results of lidar monitoring of the temperature of the middle atmosphere over {Tomsk}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {95--105},
year = {2024},
volume = {47},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a5/}
}
TY - JOUR AU - V. N. Marichev AU - D. A. Bochkovsky AU - A. I. Elizarov TI - Generalization of the results of lidar monitoring of the temperature of the middle atmosphere over Tomsk JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 95 EP - 105 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a5/ LA - ru ID - VKAM_2024_47_2_a5 ER -
%0 Journal Article %A V. N. Marichev %A D. A. Bochkovsky %A A. I. Elizarov %T Generalization of the results of lidar monitoring of the temperature of the middle atmosphere over Tomsk %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 95-105 %V 47 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a5/ %G ru %F VKAM_2024_47_2_a5
V. N. Marichev; D. A. Bochkovsky; A. I. Elizarov. Generalization of the results of lidar monitoring of the temperature of the middle atmosphere over Tomsk. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 47 (2024) no. 2, pp. 95-105. http://geodesic.mathdoc.fr/item/VKAM_2024_47_2_a5/
[1] URL: http://cedarweb.vsp.ucar.edu/wiki/images/7/7b/CLRV1.pdf (Data obrascheniya: 25.04.2024)
[2] URL: http://cedarweb.vsp.ucar.edu/wiki/images/1/1c/CLRV2.pdf (Data obrascheniya: 25.04.2024)
[3] Angot G., Keckhut Ph., Hauchecorne A., Claud Ch., “Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N)”, Journal of Geophysical Research Atmospheres, 117 (2012), D21102 | DOI | MR
[4] Funatsu, B. M., C. Claud, P. Keckhut, W. Steinbrecht, and A. Hauchecorne, “Investigations of stratospheric temperature regional variability with lidar and AMSU”, Journal of Geophysical Research Atmospheres, 116 (2011), D08106 | DOI
[5] Hoffmann, P., W. Singer, D. Keuer, W. K. Hocking, M. Kunze, and Y. Murayama, “Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events”, J. Atmos. Sol. Terr. Phys., 69 (2007), 2355-2356 | DOI
[6] Keckhut P., et al., “Review of ozone and temperature lidar validations performed within the framework of the network for the detection of stratospheric change”, J. Environ. Monit., 6 (2004), 721–733 | DOI
[7] Keckhut, P., et al., “An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based lidar network in support of space observations”, J. Atmos. Sol. Terr. Phys., 73 (2011), 627–642 | DOI
[8] Marichev V. N., Bochkovskii D. A., Elizarov A. I., “Construction of a thermodynamical model of the middle atmosphere of Western Siberia from the results of lidar monitoring”, Proc. SPIE, 11916 (2021), 119162W
[9] Marichev V. N., Bochkovskii D. A., “Lidarnye issledovaniya termicheskogo rezhima stratosfery nad Tomskom za 2012–2015 gg.”, Optika atmosfery i okeana, 31 (2018), 28–37
[10] Pincus R.C., Barnett V., Lewis T., Outliers in Statistical Data, 3rd edition, v. XVII, J. Wiley Sons, 1994 | MR
[11] Tukey John W., Exploratory Data Analysis, Addison-Wesley, 1977, 712 pp. | Zbl
[12] Rees D., Barnett J.J., Labitske K., “COSPAR International Reference Atmosphere: 1986. Part II, Middle Atmosphere Models”, Adv. Space Res., 10 (1990), 267-315 | DOI