Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 66-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, mathematical modeling of the electromagnetic dynamics of an atmosferic is carried out. Atmospheric is a broadband signal with a maximum intensity in the frequency range of 8-10 kHz, which propagates in the form of a plane electromagnetic wave in the complex structure of the conducting space of the waveguide formed by the Earth's surface and the ionosphere. The mathematical model of the process is described by a boundary value problem for the system of Maxwell equations. The boundary conditions of the problem determine the structure of the waveguide (Perfectly matched layer), the parameters of the conducting volume, and the interaction with inhomogeneities in the waveguide, either temporarily arising (local change in conductivity) or existing permanently (coastal line of the oceans). The mathematical model is solved by the Finite-Difference Time-domain numerical method. To solve the problem, a software package was developed in the MATLAB environment. As a result of computer simulations, it is shown that the presence of distortions of the main electromagnetic wave is caused by the mutual interference of the main wave and the reflected wave from the inhomogeneity. As a result, by observing the parameters of the atmospheric, it is possible to establish the presence of inhomogeneity along the path of its propagation. Simulation of the process of interaction of electromagnetic radiation with an inhomogeneity in a waveguide can establish a relationship between the radiation parameters and its inhomogeneities.
Keywords: atmospheric, whistler, EM plane wave, conduction inhomogeneity, PML, ABC, interference, Maxwell equations, MATLAB.
Mots-clés : FDTD
@article{VKAM_2022_41_4_a3,
     author = {D. A. Tvyordyj and E. I. Malkin and R. I. Parovik},
     title = {Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {66--88},
     year = {2022},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - E. I. Malkin
AU  - R. I. Parovik
TI  - Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 66
EP  - 88
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/
LA  - ru
ID  - VKAM_2022_41_4_a3
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A E. I. Malkin
%A R. I. Parovik
%T Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 66-88
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/
%G ru
%F VKAM_2022_41_4_a3
D. A. Tvyordyj; E. I. Malkin; R. I. Parovik. Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 66-88. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/

[1] Koronczay, D., Lichtenberger, J.,Clilverd, M. A., Rodger, C. J., Lotz, S.I., Sannikov, D. V., et al., “The source regions of whistlers.”, Journal of Geophysical Research: SpacePhysics, 124 (2019), 5082–5096 DOI: 10.1029/2019JA026559 | DOI

[2] Lichtenberger J., Ferencz C., Bodnar L., Hamar D., Steinbach P., “Automatic whistler detector and analyzer system: Automatic whistler detector”, J. Geophys. Res., 113:A12 (2008) DOI: 10.1029/2008JA013467

[3] Storey L. R. O., “An investigation of whistling atmospherics”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246:908 (1953), 113–141 DOI: 10.1098/rsta.1953.0011

[4] Elsherbeni A. Z., Demir V., The finite-difference time-domain method for electromagnetics with MATLAB simulations, SciTech Publishing, Raleigh, USA, 2015, 560 pp.

[5] Nickelson L., Electromagnetic Theory and Plasmonics for Engineers, Springer, Singapore, 2018, 749 pp.

[6] Yee K., “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 DOI: 10.1109/TAP.1966.1138693 | DOI

[7] Taflove A., Hagness S. C., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Massachusetts, USA, 2005, 1038 pp.

[8] Chen W. K., The Electrical Engineering Handbook, Elsevier, Amsterdam, 2005, 1018 pp.

[9] Courant R., Friedrichs K., Lewy H., “On the partial difference equations of mathematical physics”, IBM journal of Research and Development, 11:2 (1967), 215–234 DOI: 10.1147/rd.112.0215 | DOI

[10] Bachman G., Narici L., Beckenstein E., Fourier and Wavelet Analysis, Springer, New York, 1999, 516 pp.

[11] Lindell I. V., Sihvola A. H., “Perfect Electromagnetic Conductor”, Journal of Electromagnetic Waves and Applications, 19:7 (2005), 861–869 DOI: 10.1163/156939305775468741 | DOI

[12] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 114:2 (1994), 185–200 DOI: 10.1006/jcph.1994.1159 | DOI

[13] Berenger J. P., “Perfectly matched layer for the FDTD solution of wave-structure interaction problems”, IEEE Transactions on Antennas and Propagation, 44:1 (1996), 110–117 DOI: 10.1109/8.477535 | DOI

[14] Andrew W. V., Balanis C. A. Tirkas P. A., “Comparison of the Berenger perfectly matched layer and the Lindman higher-order ABC’s for the FDTD method”, IEEE Microwave and Guided Wave Letters, 5:6 (1995), 192–194 DOI: 10.1109/75.386128 | DOI

[15] Veihl J. C., Mittra R., “Efficient implementation of Berenger’s perfectly matched layer (PML) for finite-difference time-domain mesh truncation”, IEEE Transactions on Antennas and Propagation, 6:2 (1996), 94–96 DOI: 10.1109/75.482000

[16] Gedney S. D., “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices”, IEEE Transactions on Antennas and Propagation, 44:12 (1996), 1630–1639 DOI: 10.1109/8.546249 | DOI