Mots-clés : FDTD
@article{VKAM_2022_41_4_a3,
author = {D. A. Tvyordyj and E. I. Malkin and R. I. Parovik},
title = {Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {66--88},
year = {2022},
volume = {41},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/}
}
TY - JOUR AU - D. A. Tvyordyj AU - E. I. Malkin AU - R. I. Parovik TI - Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2022 SP - 66 EP - 88 VL - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/ LA - ru ID - VKAM_2022_41_4_a3 ER -
%0 Journal Article %A D. A. Tvyordyj %A E. I. Malkin %A R. I. Parovik %T Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2022 %P 66-88 %V 41 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/ %G ru %F VKAM_2022_41_4_a3
D. A. Tvyordyj; E. I. Malkin; R. I. Parovik. Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 41 (2022) no. 4, pp. 66-88. http://geodesic.mathdoc.fr/item/VKAM_2022_41_4_a3/
[1] Koronczay, D., Lichtenberger, J.,Clilverd, M. A., Rodger, C. J., Lotz, S.I., Sannikov, D. V., et al., “The source regions of whistlers.”, Journal of Geophysical Research: SpacePhysics, 124 (2019), 5082–5096 DOI: 10.1029/2019JA026559 | DOI
[2] Lichtenberger J., Ferencz C., Bodnar L., Hamar D., Steinbach P., “Automatic whistler detector and analyzer system: Automatic whistler detector”, J. Geophys. Res., 113:A12 (2008) DOI: 10.1029/2008JA013467
[3] Storey L. R. O., “An investigation of whistling atmospherics”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246:908 (1953), 113–141 DOI: 10.1098/rsta.1953.0011
[4] Elsherbeni A. Z., Demir V., The finite-difference time-domain method for electromagnetics with MATLAB simulations, SciTech Publishing, Raleigh, USA, 2015, 560 pp.
[5] Nickelson L., Electromagnetic Theory and Plasmonics for Engineers, Springer, Singapore, 2018, 749 pp.
[6] Yee K., “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 DOI: 10.1109/TAP.1966.1138693 | DOI
[7] Taflove A., Hagness S. C., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Massachusetts, USA, 2005, 1038 pp.
[8] Chen W. K., The Electrical Engineering Handbook, Elsevier, Amsterdam, 2005, 1018 pp.
[9] Courant R., Friedrichs K., Lewy H., “On the partial difference equations of mathematical physics”, IBM journal of Research and Development, 11:2 (1967), 215–234 DOI: 10.1147/rd.112.0215 | DOI
[10] Bachman G., Narici L., Beckenstein E., Fourier and Wavelet Analysis, Springer, New York, 1999, 516 pp.
[11] Lindell I. V., Sihvola A. H., “Perfect Electromagnetic Conductor”, Journal of Electromagnetic Waves and Applications, 19:7 (2005), 861–869 DOI: 10.1163/156939305775468741 | DOI
[12] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 114:2 (1994), 185–200 DOI: 10.1006/jcph.1994.1159 | DOI
[13] Berenger J. P., “Perfectly matched layer for the FDTD solution of wave-structure interaction problems”, IEEE Transactions on Antennas and Propagation, 44:1 (1996), 110–117 DOI: 10.1109/8.477535 | DOI
[14] Andrew W. V., Balanis C. A. Tirkas P. A., “Comparison of the Berenger perfectly matched layer and the Lindman higher-order ABC’s for the FDTD method”, IEEE Microwave and Guided Wave Letters, 5:6 (1995), 192–194 DOI: 10.1109/75.386128 | DOI
[15] Veihl J. C., Mittra R., “Efficient implementation of Berenger’s perfectly matched layer (PML) for finite-difference time-domain mesh truncation”, IEEE Transactions on Antennas and Propagation, 6:2 (1996), 94–96 DOI: 10.1109/75.482000
[16] Gedney S. D., “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices”, IEEE Transactions on Antennas and Propagation, 44:12 (1996), 1630–1639 DOI: 10.1109/8.546249 | DOI