@article{VKAM_2022_39_2_a9,
author = {M. A. Kazakov},
title = {Clustering algorithm based on feature space partitioning},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {136--149},
year = {2022},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/}
}
M. A. Kazakov. Clustering algorithm based on feature space partitioning. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 136-149. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/
[1] Géron A., Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, O'Reilly Media, Inc., 2019, 856 pp.
[2] Raschka S., Python machine learning, 1st edition, Packt publishing ltd, 2015, 456 pp.
[3] Muller A. C., Guido S., Introduction to machine learning with Python: a guide for data scientists, O'Reilly Media, 2016, 398 pp.
[4] MacQueen J. B, “Some Methods for classification and Analysis of Multivariate Observations”, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1 (1967), 281–297
[5] Lloyd S., Stuart P., “Least square quantization in PCM”, IEEE Transactions on Information Theory, 28:2 (1982), 129–137 | DOI
[6] Sibson R., “SLINK: an optimally efficient algorithm for the single-link cluster method”, The Computer Journal. British Computer Society, 16:1 (1973), 30–34
[7] Defays D., “An efficient algorithm for a complete link method”, The Computer Journal. British Computer Society, 20:4 (1977), 364–366
[8] Ester M., Kriegel H. P., Sander J., Xu X., “A density-based algorithm for discovering clusters in large spatial databases with noise”, KDD., 96:34 (1996), 226–231
[9] Sander J. et al., “Density-based clustering in spatial databases: The algorithm gdbscan and its applications”, Data mining and knowledge discovery, 2:2 (1998), 169–194 | DOI
[10] Shibzukhov Z. M., “On the Principle of Empirical Risk Minimization Based on Averaging Aggregation Functions”, Doklady Mathematics, 96:2 (2017), 494–497 DOI: 10.1134/S106456241705026X | DOI
[11] Shibzukhov Z. M., “On a Robust Approach to Search for Cluster Centers”, Automation and Remote Control, 82:10 (2021), 1742–1751 DOI: 10.1134/S0005117921100118 | DOI
[12] Shibzukhov Z. M., “Machine Learning Based on the Principle of Minimizing Robust Mean Estimates”, Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020, 1310 (2020), 472–477 DOI: 10.1007/978-3-030-65596-956 | DOI
[13] Kharinov M. V., “Superpixel Clustering”, International Russian Automation Conference (RusAutoCon). – IEEE, 2021, 303–308 DOI: 10.1109/RusAutoCon52004.2021.9537461 | DOI
[14] Huang D., Wang C. D., Lai J. H., “Locally weighted ensemble clustering”, IEEE transactions on cybernetics, 48:5 (2017), 1460–1473 DOI: 10.1109/TCYB.2017.2702343 | DOI
[15] Debnath T., Song M., “Fast Optimal Circular Clustering and Applications on Round Genomes”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18:6 (2021), 2061–2071 DOI: 10.1109/TCBB.2021.3077573 | DOI
[16] Nock R., Nielsen F., “On Weighting Clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:8 (2006), 1223–1235 DOI: 10.1109/TPAMI.2006.168 | DOI
[17] Kaur P. J. et al., “Cluster quality based performance evaluation of hierarchical clustering method”, 1st International Conference on Next Generation Computing Technologies (NGCT). – IEEE, 2015, 649–653 DOI: 10.1109/NGCT.2015.7375201
[18] Flach P., Machine learning: the art and science of algorithms that make sense of data, 1st edition, Cambridge University Press, 2012, 416 pp.
[19] Shu M. L. et al., “Planning the obstacle-avoidance trajectory of mobile anchor in 3D sensor networks”, Science China Information Sciences, 58:10 (2015), 1–10 DOI: 10.1007/s11432-015-5354-2 | DOI
[20] Ankerst M., Breunig M., Kriegel H. P., Sander J., “OPTICS: Ordering Points To Identify the Clustering Structure”, ACM SIGMOD international conference on Management of data. ACM Press., 28:2 (1999), 49–60 DOI: 10.1145/304181.304187 | DOI
[21] Achtert, E., Böhm, C., Kröger, P., “DeLi-Clu: Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering by a Closest Pair Ranking”, Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, 3918 (2006), 119–128 DOI: 10.1007/1173113916 | DOI