Clustering algorithm based on feature space partitioning
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 136-149
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new approach to robust clustering is proposed based on recursive partitioning of the feature space and density analysis. An algorithm for robust clustering of linearly inseparable points, its software implementation, as well as test results on classical data distributions are presented.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
clustering, robust clustering, machine learning.
                    
                  
                
                
                @article{VKAM_2022_39_2_a9,
     author = {M. A. Kazakov},
     title = {Clustering algorithm based on feature space partitioning},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {136--149},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/}
}
                      
                      
                    M. A. Kazakov. Clustering algorithm based on feature space partitioning. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 136-149. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/
