Clustering algorithm based on feature space partitioning
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 136-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach to robust clustering is proposed based on recursive partitioning of the feature space and density analysis. An algorithm for robust clustering of linearly inseparable points, its software implementation, as well as test results on classical data distributions are presented.
Keywords: clustering, robust clustering, machine learning.
@article{VKAM_2022_39_2_a9,
     author = {M. A. Kazakov},
     title = {Clustering algorithm based on feature space partitioning},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {136--149},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/}
}
TY  - JOUR
AU  - M. A. Kazakov
TI  - Clustering algorithm based on feature space partitioning
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 136
EP  - 149
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/
LA  - ru
ID  - VKAM_2022_39_2_a9
ER  - 
%0 Journal Article
%A M. A. Kazakov
%T Clustering algorithm based on feature space partitioning
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 136-149
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/
%G ru
%F VKAM_2022_39_2_a9
M. A. Kazakov. Clustering algorithm based on feature space partitioning. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 136-149. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a9/

[1] Géron A., Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, O'Reilly Media, Inc., 2019, 856 pp.

[2] Raschka S., Python machine learning, 1st edition, Packt publishing ltd, 2015, 456 pp.

[3] Muller A. C., Guido S., Introduction to machine learning with Python: a guide for data scientists, O'Reilly Media, 2016, 398 pp.

[4] MacQueen J. B, “Some Methods for classification and Analysis of Multivariate Observations”, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1 (1967), 281–297

[5] Lloyd S., Stuart P., “Least square quantization in PCM”, IEEE Transactions on Information Theory, 28:2 (1982), 129–137 | DOI

[6] Sibson R., “SLINK: an optimally efficient algorithm for the single-link cluster method”, The Computer Journal. British Computer Society, 16:1 (1973), 30–34

[7] Defays D., “An efficient algorithm for a complete link method”, The Computer Journal. British Computer Society, 20:4 (1977), 364–366

[8] Ester M., Kriegel H. P., Sander J., Xu X., “A density-based algorithm for discovering clusters in large spatial databases with noise”, KDD., 96:34 (1996), 226–231

[9] Sander J. et al., “Density-based clustering in spatial databases: The algorithm gdbscan and its applications”, Data mining and knowledge discovery, 2:2 (1998), 169–194 | DOI

[10] Shibzukhov Z. M., “On the Principle of Empirical Risk Minimization Based on Averaging Aggregation Functions”, Doklady Mathematics, 96:2 (2017), 494–497 DOI: 10.1134/S106456241705026X | DOI

[11] Shibzukhov Z. M., “On a Robust Approach to Search for Cluster Centers”, Automation and Remote Control, 82:10 (2021), 1742–1751 DOI: 10.1134/S0005117921100118 | DOI

[12] Shibzukhov Z. M., “Machine Learning Based on the Principle of Minimizing Robust Mean Estimates”, Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020, 1310 (2020), 472–477 DOI: 10.1007/978-3-030-65596-956 | DOI

[13] Kharinov M. V., “Superpixel Clustering”, International Russian Automation Conference (RusAutoCon). – IEEE, 2021, 303–308 DOI: 10.1109/RusAutoCon52004.2021.9537461 | DOI

[14] Huang D., Wang C. D., Lai J. H., “Locally weighted ensemble clustering”, IEEE transactions on cybernetics, 48:5 (2017), 1460–1473 DOI: 10.1109/TCYB.2017.2702343 | DOI

[15] Debnath T., Song M., “Fast Optimal Circular Clustering and Applications on Round Genomes”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18:6 (2021), 2061–2071 DOI: 10.1109/TCBB.2021.3077573 | DOI

[16] Nock R., Nielsen F., “On Weighting Clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:8 (2006), 1223–1235 DOI: 10.1109/TPAMI.2006.168 | DOI

[17] Kaur P. J. et al., “Cluster quality based performance evaluation of hierarchical clustering method”, 1st International Conference on Next Generation Computing Technologies (NGCT). – IEEE, 2015, 649–653 DOI: 10.1109/NGCT.2015.7375201

[18] Flach P., Machine learning: the art and science of algorithms that make sense of data, 1st edition, Cambridge University Press, 2012, 416 pp.

[19] Shu M. L. et al., “Planning the obstacle-avoidance trajectory of mobile anchor in 3D sensor networks”, Science China Information Sciences, 58:10 (2015), 1–10 DOI: 10.1007/s11432-015-5354-2 | DOI

[20] Ankerst M., Breunig M., Kriegel H. P., Sander J., “OPTICS: Ordering Points To Identify the Clustering Structure”, ACM SIGMOD international conference on Management of data. ACM Press., 28:2 (1999), 49–60 DOI: 10.1145/304181.304187 | DOI

[21] Achtert, E., Böhm, C., Kröger, P., “DeLi-Clu: Boosting Robustness, Completeness, Usability, and Efficiency of Hierarchical Clustering by a Closest Pair Ranking”, Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, 3918 (2006), 119–128 DOI: 10.1007/1173113916 | DOI