Scenario of the invasive process in the modification of Bazykins population equation with delayed regulation and high reproductive potential
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 91-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper discusses modeling of the variant of the development of a rapid invasive process in competitive biosystems. The emergence of dangerous alien species leads to extreme phenomena in the dynamics of populations. Invasions generate a phase of active spread of the alien species, but outbreaks are often followed by a phase of sharp depression. Changes in the process are associated with active resistance, which has a delayed activation time interval and a threshold level of maximizing the impact $J$. For the mathematical formalization of the successively following stages of the outbreak/crisis, equations with a deviating argument are used. In a variant of the equation with a delayed tuning of the biotic reaction $\dot x=rf(x(t-\tau))-\mathfrak{F}(x^m(t-\nu);J)$ a variant of the passage of the crisis that occurs it is in the phase of rapid growth until a balance is reached with the resources of the environment. Due to the threshold feedback, the competitive pressure after a deep crisis is weakened and the invasive population goes into a mode of damped oscillations. The asymptotic level of equilibrium in the scenario with a crisis turns out to be much less than the theoretically permissible limiting level of abundance for an alien species in a given environment. The new Equation also has an interpretation to describe the weakening development of the immune response in a situation of chronicity of the infectious process.
Keywords: modeling of extreme events, threshold effects, equations with delay, nonlinear ecological regulation.
@article{VKAM_2022_39_2_a6,
     author = {A. Yu. Perevaryukha},
     title = {Scenario of the invasive process in the modification of {Bazykins} population equation with delayed regulation and high reproductive potential},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {91--102},
     year = {2022},
     volume = {39},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a6/}
}
TY  - JOUR
AU  - A. Yu. Perevaryukha
TI  - Scenario of the invasive process in the modification of Bazykins population equation with delayed regulation and high reproductive potential
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2022
SP  - 91
EP  - 102
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a6/
LA  - ru
ID  - VKAM_2022_39_2_a6
ER  - 
%0 Journal Article
%A A. Yu. Perevaryukha
%T Scenario of the invasive process in the modification of Bazykins population equation with delayed regulation and high reproductive potential
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2022
%P 91-102
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a6/
%G ru
%F VKAM_2022_39_2_a6
A. Yu. Perevaryukha. Scenario of the invasive process in the modification of Bazykins population equation with delayed regulation and high reproductive potential. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 39 (2022) no. 2, pp. 91-102. http://geodesic.mathdoc.fr/item/VKAM_2022_39_2_a6/

[1] Simberloff D., Gibbons L., “Now you see them, Now you don't! - Population crashes of established introduced species”, Biological Invasions, 6:2 (2004), 116-172 | DOI

[2] Peleg M., Corradini M. G., Normand M. D., “The logistic (Verhulst) model for sigmoid microbial growth curves revisited”, Food Research International, 40:7 (2007), 808-818 | DOI

[3] Kurkin A. A., Kurkina O. E., Pelinovskii E. N., “Logisticheskie modeli rasprostraneniya epidemii”, Trudy NGTU im. R.E. Alekseeva, 2:2 (2020), 9-18

[4] Hutchinson G. E., “Circular causal systems in ecology”, Ann. New York Acad. Sci, 50:2 (1948), 221-246 | DOI

[5] Glyzin S. D., Kolesov A. Y., Rozov N. K., “A self-symmetric cycle in a system of two diffusely connected Hutchinson’s equations”, Sbornik: Mathematics, 210:2 (2019), 184-233 | DOI

[6] Kaschenko S. A., Loginov D. O., “About global stable of solutions of logistic equation with delay”, Journal of Physics: Conf. Series, 937:2 (2017), 120-139

[7] Gopalsamy K., “Persistence and Global Stability in a Population Model”, Journal of Mathematical Analysis and Applications, 224:3 (1998), 59-80 | DOI

[8] Khokhlov A. D., “Population survival conditions in Nicholson's models with delay”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 30:3 (2010), 29–32

[9] Hale J., “Persistence in infinite dimensional systems”, SIAM J. Math. Anal, 20:4 (1989), 388-395 | DOI

[10] Glyzin D. S., Kashchenko S. A., Polstyanov A. S., “Spatially inhomogeneous periodic solutions of the Hutchinson equation with distributed saturation”, Modeling and analysis of information systems, 7:1 (2011), 37-45

[11] Kolesov A. Y., Mishchenko E. F., Rozov N. K., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990-2002 | DOI

[12] Bazykin A. D., Aponina E. A., “Model ekosistemy trekh troficheskikh urovnei s uchetom suschestvovaniya nizhnei kriticheskoi plotnosti populyatsii produtsenta”, Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 4:2 (1981), 186-203

[13] Buck J., Hechinger R., “Host density increases parasite recruitment but decreases host risk in a snail-trematode system”, Ecology, 98:8 (2017), 2029-2038 | DOI

[14] Perevaryukha A. Yu., “An iterative continuous-event model of the population outbreak of a phytophagous hemipteran”, Biophysics, 61:2 (2016), 334-341 | DOI

[15] Aarde V., Whyte T., Pimm L., “Culling and the dynamics of the Kruger National Park African elephant population”, Animal Conservation, 2:4 (1999), 287-294 | DOI

[16] Borisova T. Yu., Soloveva I. V., “Problemnye aspekty modelirovaniya populyatsionnykh protsessov i kriterii ikh soglasovaniya”, Matematicheskie mashiny i sistemy, 1:1 (2017), 71-81

[17] Nikitina A. V., “Optimal control of sustainable development in the biological rehabilitation of the Azov Sea”, Math. Mod. Comp. Simul., 2:1 (2017), 101-107 | DOI