Hereditary low-mode dynamo model
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 40-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article discusses a dynamo model in the form of a two-dimensional dynamical system in integro-differential form. The model implements a stabilizing polarization generator in the form of suppression of the a effect of convolutional type functional from current and previous helicity and energy values. The presence of this suppression mechanism introduces hereditarity (memory) into the model. For modeling, a digital scheme was constructed in the form of a combination of difference schemes for the differential and integral parts, a twostep implicit Runge-Kutta method and a trapezium method, respectively. We also reviewed and graphically presented the dynamic modes of our model.
Keywords: principle of extremum, unique solvability, solvability, index of equation, integral equations.
Mots-clés : singular coefficient
@article{VKAM_2021_35_2_a3,
     author = {E. A. Kazakov},
     title = {Hereditary low-mode dynamo model},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {40--47},
     year = {2021},
     volume = {35},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a3/}
}
TY  - JOUR
AU  - E. A. Kazakov
TI  - Hereditary low-mode dynamo model
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2021
SP  - 40
EP  - 47
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a3/
LA  - ru
ID  - VKAM_2021_35_2_a3
ER  - 
%0 Journal Article
%A E. A. Kazakov
%T Hereditary low-mode dynamo model
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2021
%P 40-47
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a3/
%G ru
%F VKAM_2021_35_2_a3
E. A. Kazakov. Hereditary low-mode dynamo model. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 35 (2021) no. 2, pp. 40-47. http://geodesic.mathdoc.fr/item/VKAM_2021_35_2_a3/

[1] Zeldovich Y. B., Rusmaikin A. A., Sokoloff D. D., Magnetic felds in astrophysics. The Fluid Mechanics of Astrophysics and Geophysics., Gordon and Breach, New York, 1983, 382 pp. | MR

[2] Sokolov D. D., Nefedov S. N., “Malomodovoye priblizheniye v zadache zvezdnogo dinamo”, Vychislitel'nyye metody i programmirovaniye, 2007, no. 2, 195–204

[3] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, Moskva, 1968, 720 pp.

[4] Tabor M., Khaos i integriruyemost' v nelineynoy dinamike, Yeditorial URSS, Moskva, 2001, 585 pp.

[5] Lorenz E. N., “Deterministic nonperiodic flow”, Journal of the atmospheric sciences, 1963, no. 20, 130-141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Kuznetsov S. P., Dinamicheskiy khaos, Fizmatlit, Moskva, 2006, 356 pp.

[7] Parker E. N., “Hydromagnetic dynamo models”, Astrophysical Jour, 1955, no. 122, 293–314 | DOI | MR