The use of long short-term memory and gated recurrent unit for predicting the values of geomagnetic indices
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 110-121
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work, with the help of deep learning, predicting the values of the following geomagnetic indices (GI) is considered: Dst, Kp, AE and Ap. For forecasting we use the architectures are long short-term memory (LSTM) and gated recurrent unit (GRU). For various GI indices, the loss function is analyzed depending on the periodicity of the source data. It has been established that forecasting accuracy increases with decreasing periodicity of the initial data of geomagnetic indices. For the analysis, the following periods of the initial GI data were used: hour, 3 hours, day. For the analysis we used hour, 3 hours and day periods of the initial GI source data.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
geomagnetic indices, forecasting, Dst index, Kp-index, AE index, AP index, long short-term memory, managed recurrent blocks.
                    
                  
                
                
                @article{VKAM_2020_33_4_a9,
     author = {V. A. Mochalov and A. V. Mochalova},
     title = {The use of long short-term memory and gated recurrent unit for predicting the values of geomagnetic indices},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {110--121},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a9/}
}
                      
                      
                    TY - JOUR AU - V. A. Mochalov AU - A. V. Mochalova TI - The use of long short-term memory and gated recurrent unit for predicting the values of geomagnetic indices JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 110 EP - 121 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a9/ LA - ru ID - VKAM_2020_33_4_a9 ER -
%0 Journal Article %A V. A. Mochalov %A A. V. Mochalova %T The use of long short-term memory and gated recurrent unit for predicting the values of geomagnetic indices %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 110-121 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a9/ %G ru %F VKAM_2020_33_4_a9
V. A. Mochalov; A. V. Mochalova. The use of long short-term memory and gated recurrent unit for predicting the values of geomagnetic indices. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 110-121. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a9/