Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 109-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work simulates the flow of a homogeneous gas and an inhomogeneous medium. The aim of the work is to study the influence of the particle size of the dispersed component of the mixture on the outflow of the dispersed medium into vacuum and to identify differences from the process of outflow of a homogeneous gas into the vacuum. The mathematical model used in this work implements a continuous methodology for modeling the flow of an inhomogeneous medium, this kind of methodology for modeling the mixture motion involves solving the complete hydrodynamic system of equations of motion for each of the components of the mixture, the systems of equations of motion of the components of the mixture are connected by terms responsible for the interphase force and thermal interaction. The system of equations includes continuity equations for the density of the carrier medium and the average density of the dispersed component of the mixture. To describe the momentum conservation of the carrier medium, the Navier-Stokes equation was solved for the dispersed component of the mixture, the equation of momentum conservation was also written taking into account the terms responsible for the intercomponent interaction. The energy conservation equations for the mixture components were solved taking into account inter-component heat transfer. The system of equations of the mathematical model supplemented by boundary conditions was solved by an explicit finite-difference method of the second order of accuracy. As a result of the simulation, differences in the distribution of the parameters of a continuous medium during the propagation of pure gas and gas suspension of particles into a vacuum are revealed. The effect of the particle size of the dispersed phase on the process of the outflow of the carrier medium and the dispersed component of the gas suspension into vacuum was also revealed.
Mots-clés : gas suspension
Keywords: Navier-Stokes equation, numerical simulation, intercomponent interaction.
@article{VKAM_2020_30_1_a8,
     author = {D. A. Tukmakov and N. A. Tukmakova},
     title = {Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {109--119},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/}
}
TY  - JOUR
AU  - D. A. Tukmakov
AU  - N. A. Tukmakova
TI  - Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 109
EP  - 119
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/
LA  - ru
ID  - VKAM_2020_30_1_a8
ER  - 
%0 Journal Article
%A D. A. Tukmakov
%A N. A. Tukmakova
%T Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 109-119
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/
%G ru
%F VKAM_2020_30_1_a8
D. A. Tukmakov; N. A. Tukmakova. Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/

[1] Nigmatulin R. I., Osnovy mekhaniki geterogennyh sred, Nauka, 1978

[2] Kutushev A. G., Matematicheskoe modelirovanie volnovyh processov v aerodispersnyh i poroshkoobraznyh sredah, Nedra, Sankt-Peterburg, 2003

[3] Sternin L. E., Dvuhfaznye mono – i polidispersnye techeniya gaza s chasticami, Mashinostroenie, M., 1980

[4] Fedorov A. V., Fomin V. M., Hmel' T. A., Volnovye processy v gazovzvesyah chastic metallov, Novosibirsk, 2015

[5] Vanyunina M. V. et al., “Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air”, Journal of Applied Mechanics and Technical Physics, 46:2 (2005), 250–256

[6] Verevkin A. A., Tsirkunov Y. M., “There are no two-phase hypersonic shock tunnels for the dispersed phase”, Journal of Applied Mechanics and Technical Physics, 49:5 (2008), 789–798 pp.

[7] Varaksin A. Y., Protasov M. V., Yatsenko V. P., “Analysis of the deposited processes of solid particles”, High Temperature, 2013, no. 5, 665–672 | DOI

[8] Aref'ev K. Y., Voroneckij A. B., Suchkov S. A., “Raschetnoe issledovanie osobennostej drobleniya i ispareniya kapel' v gazodinamicheskih techeniyah s ciklicheskimi udarnymi volnami”, Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie, 2015, no. 10, 17–30

[9] Hishida M., Fujiwara T., Wolanski R., “Fundamentals of rotating detonations”, Shock Waves, 19:1 (2009), 1–10 | DOI | Zbl

[10] Tukmakov A. L., “Computer simulation of the liquid channel caused by the resonance of the open channel”, Acoustical Physics, 2 (2009), 253-260

[11] Gel'fand B. E. i dr., “Udarnye volny pri razlete szhatogo ob"ema gazovzvesi tverdyh chastic”, Doklady AN SSSR, 281:5 (1985), 1113–1116

[12] Gubaidullin D. A., Tukmakov D. A., “Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles”, Mathematical Models and Computer Simulations, 7:3 (2015), 246–253 | Zbl

[13] Nigmatulin R. I., Gubaidullin D. A., Tukmakov D. A., “Shock wave dispersion of gas – particle mixtures”, Doklady Physics, 61:2 (2016), 70–73 | DOI

[14] Tukmakov D. A., “Numerical study of polydisperse aerosol dynamics with the drops destruction”, Lobachevskii Journal of Mathematics, 40::6 (2019), 824–827 | DOI | Zbl

[15] Tukmakov D. A., “Numerical simulation of shock-wave flows in a gas suspension with inhomogeneous concentration of the dispersed phase”, Russian Aeronautics, 2019, no. 1, 59–65

[16] Fletcher C. A., Computation Techniques for Fluid Dynacmics, Springer-Verlang, Berlin, 1988

[17] Kovenya V. M., Tarnavskij G. A., CHernyj S. G., Primenenie metoda rasshchepleniya v zadachah aerodinamiki, Nauka, Novosibirsk, 1990

[18] Chernyj G. G., Gazovaya dinamika, Nauka, Moskva, 1988