Keywords: Navier-Stokes equation, numerical simulation, intercomponent interaction.
@article{VKAM_2020_30_1_a8,
author = {D. A. Tukmakov and N. A. Tukmakova},
title = {Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {109--119},
year = {2020},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/}
}
TY - JOUR AU - D. A. Tukmakov AU - N. A. Tukmakova TI - Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 109 EP - 119 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/ LA - ru ID - VKAM_2020_30_1_a8 ER -
%0 Journal Article %A D. A. Tukmakov %A N. A. Tukmakova %T Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 109-119 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/ %G ru %F VKAM_2020_30_1_a8
D. A. Tukmakov; N. A. Tukmakova. Numerical study of the influence of dispersed inclusions size on the gas-suspension splitting process in vacuum. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a8/
[1] Nigmatulin R. I., Osnovy mekhaniki geterogennyh sred, Nauka, 1978
[2] Kutushev A. G., Matematicheskoe modelirovanie volnovyh processov v aerodispersnyh i poroshkoobraznyh sredah, Nedra, Sankt-Peterburg, 2003
[3] Sternin L. E., Dvuhfaznye mono – i polidispersnye techeniya gaza s chasticami, Mashinostroenie, M., 1980
[4] Fedorov A. V., Fomin V. M., Hmel' T. A., Volnovye processy v gazovzvesyah chastic metallov, Novosibirsk, 2015
[5] Vanyunina M. V. et al., “Aerosol aspiration into a cylindrical sampler from a low-velocity downward flow and from calm air”, Journal of Applied Mechanics and Technical Physics, 46:2 (2005), 250–256
[6] Verevkin A. A., Tsirkunov Y. M., “There are no two-phase hypersonic shock tunnels for the dispersed phase”, Journal of Applied Mechanics and Technical Physics, 49:5 (2008), 789–798 pp.
[7] Varaksin A. Y., Protasov M. V., Yatsenko V. P., “Analysis of the deposited processes of solid particles”, High Temperature, 2013, no. 5, 665–672 | DOI
[8] Aref'ev K. Y., Voroneckij A. B., Suchkov S. A., “Raschetnoe issledovanie osobennostej drobleniya i ispareniya kapel' v gazodinamicheskih techeniyah s ciklicheskimi udarnymi volnami”, Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie, 2015, no. 10, 17–30
[9] Hishida M., Fujiwara T., Wolanski R., “Fundamentals of rotating detonations”, Shock Waves, 19:1 (2009), 1–10 | DOI | Zbl
[10] Tukmakov A. L., “Computer simulation of the liquid channel caused by the resonance of the open channel”, Acoustical Physics, 2 (2009), 253-260
[11] Gel'fand B. E. i dr., “Udarnye volny pri razlete szhatogo ob"ema gazovzvesi tverdyh chastic”, Doklady AN SSSR, 281:5 (1985), 1113–1116
[12] Gubaidullin D. A., Tukmakov D. A., “Numerical research of evolution of the shock wave in gas-particles suspension with account uneven distribution of particles”, Mathematical Models and Computer Simulations, 7:3 (2015), 246–253 | Zbl
[13] Nigmatulin R. I., Gubaidullin D. A., Tukmakov D. A., “Shock wave dispersion of gas – particle mixtures”, Doklady Physics, 61:2 (2016), 70–73 | DOI
[14] Tukmakov D. A., “Numerical study of polydisperse aerosol dynamics with the drops destruction”, Lobachevskii Journal of Mathematics, 40::6 (2019), 824–827 | DOI | Zbl
[15] Tukmakov D. A., “Numerical simulation of shock-wave flows in a gas suspension with inhomogeneous concentration of the dispersed phase”, Russian Aeronautics, 2019, no. 1, 59–65
[16] Fletcher C. A., Computation Techniques for Fluid Dynacmics, Springer-Verlang, Berlin, 1988
[17] Kovenya V. M., Tarnavskij G. A., CHernyj S. G., Primenenie metoda rasshchepleniya v zadachah aerodinamiki, Nauka, Novosibirsk, 1990
[18] Chernyj G. G., Gazovaya dinamika, Nauka, Moskva, 1988