@article{VKAM_2019_26_1_a6,
author = {E. R. Novikov{\cyra} and R. I. Parovik},
title = {Study points of rest hereditarity dynamic systems {Van} der {Pol-Duffing}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {71--77},
year = {2019},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/}
}
TY - JOUR AU - E. R. Novikovа AU - R. I. Parovik TI - Study points of rest hereditarity dynamic systems Van der Pol-Duffing JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 71 EP - 77 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/ LA - ru ID - VKAM_2019_26_1_a6 ER -
E. R. Novikovа; R. I. Parovik. Study points of rest hereditarity dynamic systems Van der Pol-Duffing. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/
[1] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing and Springer-Verlag Berlin Heidelberg, 2011, 218 pp. | Zbl
[2] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov [Mathematical modeling of nonlinear hereditary oscillators], monografiya, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 134 pp. (in Russia)
[3] Vol'terra V., Teoriya funkcionalov, integral'nyh i integro-differencial'nyh uravnenij [Theory of functionals, integral and integro-differential equations], Nauka, M., 1982 (in Russia)
[4] Nahushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its application], Fizmatlit, M., 2003, 272 pp. (in Russia)
[5] Meilanov R. P., Yanpolov M. S., “Features of the phase trajectory of a fractal oscillator”, Technical Physics Letters, 28:1 (2002), 30-32 (in Engl. trans.)
[6] Parovik R. I., “Zadacha Koshi dlya nelokal'nogo uravneniya Mat'e [Cauchy problem for the non-local Mathieu equation]”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 13:2 (2011), 90-98 (in Russia)
[7] Parovik R. I., “Matematicheskaya model' fraktal'nogo oscillyatora Van-der-Polya [Mathematical model of the fractal van der Pol oscillator]”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57-62
[8] Ogorodnikov E. N., “Matematicheskie modeli drobnyh oscillyatorov, postanovka i struktura resheniya zadachi Koshi [Mathematical models of fractional oscillators, formulation and structure of the solution of the Cauchy problem]”, Matematicheskoe modelirovanie i kraevye zadachi, v. 1, 2009, 177–181
[9] Li S., Niu J., Li X., “Primary resonance of fractional-order Duffing–van der Pol oscillator by harmonic balance method”, Chinese Physics B., 27:12 (2018), 120502 | DOI
[10] Novikova E.R., “Van der Pol-Duffing oscillator with the effect of hereditary”, Bulletin KRASEC. Physical and Mathematical Sciences, 17:2 (2017), 65-75 | MR