Study points of rest hereditarity dynamic systems Van der Pol-Duffing
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using numerical modeling, oscillograms and phase trajectories were constructed to study the limit cycles of a van der Pol-Duffing nonlinear oscillatory system with a power memory. The simulation results showed that in the absence of a power memory ($\alpha=2$, $\beta=1$) or the classical van der Pol Duffing dynamical system, there is a single stable limit cycle, i.e. Lienar theorem holds. In the case of viscous friction ($\alpha=2$, $0<\beta<1$), there is a family of stable limit cycles of various shapes. In other cases, the limit cycle is destroyed in two scenarios: a Hopf bifurcation (limit cycle-limit point) or (limit cycle-aperiodic process). Further continuation of the research may be related to the construction of the spectrum of Lyapunov maximal exponents in order to identify chaotic oscillatory regimes for the considered hereditary dynamic system (HDS).
Keywords: limit cycle, exponential Van der Pol-Duffing oscillator, Hopf bifurcation, oscillograms and phase trajectories.
@article{VKAM_2019_26_1_a6,
     author = {E. R. Novikov{\cyra} and R. I. Parovik},
     title = {Study points of rest hereditarity dynamic systems {Van} der {Pol-Duffing}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {71--77},
     year = {2019},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/}
}
TY  - JOUR
AU  - E. R. Novikovа
AU  - R. I. Parovik
TI  - Study points of rest hereditarity dynamic systems Van der Pol-Duffing
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 71
EP  - 77
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/
LA  - ru
ID  - VKAM_2019_26_1_a6
ER  - 
%0 Journal Article
%A E. R. Novikovа
%A R. I. Parovik
%T Study points of rest hereditarity dynamic systems Van der Pol-Duffing
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 71-77
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/
%G ru
%F VKAM_2019_26_1_a6
E. R. Novikovа; R. I. Parovik. Study points of rest hereditarity dynamic systems Van der Pol-Duffing. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a6/

[1] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing and Springer-Verlag Berlin Heidelberg, 2011, 218 pp. | Zbl

[2] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov [Mathematical modeling of nonlinear hereditary oscillators], monografiya, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 134 pp. (in Russia)

[3] Vol'terra V., Teoriya funkcionalov, integral'nyh i integro-differencial'nyh uravnenij [Theory of functionals, integral and integro-differential equations], Nauka, M., 1982 (in Russia)

[4] Nahushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its application], Fizmatlit, M., 2003, 272 pp. (in Russia)

[5] Meilanov R. P., Yanpolov M. S., “Features of the phase trajectory of a fractal oscillator”, Technical Physics Letters, 28:1 (2002), 30-32 (in Engl. trans.)

[6] Parovik R. I., “Zadacha Koshi dlya nelokal'nogo uravneniya Mat'e [Cauchy problem for the non-local Mathieu equation]”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 13:2 (2011), 90-98 (in Russia)

[7] Parovik R. I., “Matematicheskaya model' fraktal'nogo oscillyatora Van-der-Polya [Mathematical model of the fractal van der Pol oscillator]”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 17:2 (2015), 57-62

[8] Ogorodnikov E. N., “Matematicheskie modeli drobnyh oscillyatorov, postanovka i struktura resheniya zadachi Koshi [Mathematical models of fractional oscillators, formulation and structure of the solution of the Cauchy problem]”, Matematicheskoe modelirovanie i kraevye zadachi, v. 1, 2009, 177–181

[9] Li S., Niu J., Li X., “Primary resonance of fractional-order Duffing–van der Pol oscillator by harmonic balance method”, Chinese Physics B., 27:12 (2018), 120502 | DOI

[10] Novikova E.R., “Van der Pol-Duffing oscillator with the effect of hereditary”, Bulletin KRASEC. Physical and Mathematical Sciences, 17:2 (2017), 65-75 | MR