The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 148-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for the Riccati equation with non-constant coefficients and taking into account variable power memory is proposed. Power memory is defined by the operator of a fractional derivative of a variable order generalizing the Gerasimov-Caputo derivative. In work with the help of numerical methods: the Newton method and the explicit finitedifference scheme, the solution of the proposed Cauchy problem is found, and also their calculation accuracy is determined using the Runge rule. It is shown that both methods can be used to solve the proposed Cauchy problem, but Newton’s method converges faster. Further in this work, the calculated curves and phase trajectories were constructed for a different choice of the fractional order function of the differentiation operator. It is assumed that the proposed model can be used in describing economic cyclical processes.
Mots-clés : Riccati equation
Keywords: fractional derivative, hereditarity, numerical methods, differential equation.
@article{VKAM_2018_3_a17,
     author = {D. A. Tvyordyj},
     title = {The {Cauchy} problem for the {Riccati} equation with variable power memory and non-constant coeffcients},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {148--157},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
TI  - The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 148
EP  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/
LA  - ru
ID  - VKAM_2018_3_a17
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%T The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 148-157
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/
%G ru
%F VKAM_2018_3_a17
D. A. Tvyordyj. The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 148-157. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/

[1] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'yanovsk, 2008, 512 pp.

[2] Petras I., Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science and Business Media, 2011, 218 pp. | MR | Zbl

[3] Volterra V., “Sur lesequations integro-differentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR | Zbl

[4] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[5] Parovik R. I, “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tekhnologii, 2017, no. 1, 61–68

[6] Tvyordyj D. A, “Uravnenie Rikkati s proizvodnoj drobnogo peremennogo poryadka”, Mezhdunarodnyj studencheskij nauchnyj vestnik, 2017, no. 2, 42–42

[7] Tvyordyj D.A., “Riccati equation with variable heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 16:1 (2017), 61–68

[8] Tvyordyj D. A., “EHreditarnoe uravnenie Rikkati s drobnoj proizvodnoj peremennogo poryadka”, Aktual'nye problemy prikladnoj matematiki i fiziki, Materialy mezhdunarodnoj nauchnoj konferencii, 2017, 200

[9] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 135 pp.

[10] Riccati J., “Animadversiones in aequationes differentiales secundi gradus”, Actorum Eruditorum Supplementa, 1724, no. 8, 66–73

[11] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional Riccati differential equation”, Applications and Applied Mathematics, 7:2 (2012), 595–608 | MR | Zbl

[12] Parovik R. I., “Mathematical model of a wide class memory oscillators”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 11:2 (2018), 108–122 | Zbl

[13] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429–435 | DOI | MR

[14] Novikova E. R., “Oscillyator Van der Polya-Duffinga s ehffektom ehreditarnosti”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2:18 (2017), 65–75

[15] Kumakshev S. A., “Issledovanie regulyarnyh i relaksacionnyh kolebanij oscillyatorov Rehleya i Van-der-Polya”, Vestnik Nizhegorodskogo universiteta im. NI Lobachevskogo, 2011, no. 4–2, 203–205

[16] Baranov S. V., Kuznecov S. P., Ponomarenko V. I., “Haos v fazovoj dinamike oscillyatora Van der Polya s modulirovannoj dobrotnost'yu i dopolnitel'noj zapazdyvayushchej obratnoj svyaz'yu”, Izvestiya vysshih uchebnyh zavedenij. Prikladnaya nelinejnaya dinamika, 18:1 (2010), 11–23 | Zbl

[17] Berezin I. S., ZHidkov N. P., Metody vychislenij, v. 2, M.-L., 1967, 464 pp.

[18] Tverdyj D. A., Parovik R. I., “Programma chislennogo rascheta zadachi Koshi dlya uravneniya Rikkati s proizvodnoj drobnogo peremennogo poryadka”, Fundamental'nye issledovaniya, 8-1 (2017), 98–103

[19] Feder E., Fraktaly, Mir, M., 1991