The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 148-157

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for the Riccati equation with non-constant coefficients and taking into account variable power memory is proposed. Power memory is defined by the operator of a fractional derivative of a variable order generalizing the Gerasimov-Caputo derivative. In work with the help of numerical methods: the Newton method and the explicit finitedifference scheme, the solution of the proposed Cauchy problem is found, and also their calculation accuracy is determined using the Runge rule. It is shown that both methods can be used to solve the proposed Cauchy problem, but Newton’s method converges faster. Further in this work, the calculated curves and phase trajectories were constructed for a different choice of the fractional order function of the differentiation operator. It is assumed that the proposed model can be used in describing economic cyclical processes.
Mots-clés : Riccati equation
Keywords: fractional derivative, hereditarity, numerical methods,  differential equation.
@article{VKAM_2018_3_a17,
     author = {D. A. Tvyordyj},
     title = {The {Cauchy} problem for the {Riccati} equation with variable power memory and non-constant coeffcients},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {148--157},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
TI  - The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 148
EP  - 157
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/
LA  - ru
ID  - VKAM_2018_3_a17
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%T The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 148-157
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/
%G ru
%F VKAM_2018_3_a17
D. A. Tvyordyj. The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 148-157. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/