Keywords: fractional derivative, hereditarity, numerical methods, differential equation.
@article{VKAM_2018_3_a17,
author = {D. A. Tvyordyj},
title = {The {Cauchy} problem for the {Riccati} equation with variable power memory and non-constant coeffcients},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {148--157},
year = {2018},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/}
}
TY - JOUR AU - D. A. Tvyordyj TI - The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 148 EP - 157 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/ LA - ru ID - VKAM_2018_3_a17 ER -
D. A. Tvyordyj. The Cauchy problem for the Riccati equation with variable power memory and non-constant coeffcients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 148-157. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a17/
[1] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'yanovsk, 2008, 512 pp.
[2] Petras I., Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science and Business Media, 2011, 218 pp. | MR | Zbl
[3] Volterra V., “Sur lesequations integro-differentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 | DOI | MR | Zbl
[4] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[5] Parovik R. I, “Drobnoe ischislenie v teorii kolebatel'nyh sistem”, Sovremennye naukoemkie tekhnologii, 2017, no. 1, 61–68
[6] Tvyordyj D. A, “Uravnenie Rikkati s proizvodnoj drobnogo peremennogo poryadka”, Mezhdunarodnyj studencheskij nauchnyj vestnik, 2017, no. 2, 42–42
[7] Tvyordyj D.A., “Riccati equation with variable heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 16:1 (2017), 61–68
[8] Tvyordyj D. A., “EHreditarnoe uravnenie Rikkati s drobnoj proizvodnoj peremennogo poryadka”, Aktual'nye problemy prikladnoj matematiki i fiziki, Materialy mezhdunarodnoj nauchnoj konferencii, 2017, 200
[9] Parovik R. I., Matematicheskoe modelirovanie nelinejnyh ehreditarnyh oscillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskij, 2017, 135 pp.
[10] Riccati J., “Animadversiones in aequationes differentiales secundi gradus”, Actorum Eruditorum Supplementa, 1724, no. 8, 66–73
[11] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional Riccati differential equation”, Applications and Applied Mathematics, 7:2 (2012), 595–608 | MR | Zbl
[12] Parovik R. I., “Mathematical model of a wide class memory oscillators”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 11:2 (2018), 108–122 | Zbl
[13] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429–435 | DOI | MR
[14] Novikova E. R., “Oscillyator Van der Polya-Duffinga s ehffektom ehreditarnosti”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2:18 (2017), 65–75
[15] Kumakshev S. A., “Issledovanie regulyarnyh i relaksacionnyh kolebanij oscillyatorov Rehleya i Van-der-Polya”, Vestnik Nizhegorodskogo universiteta im. NI Lobachevskogo, 2011, no. 4–2, 203–205
[16] Baranov S. V., Kuznecov S. P., Ponomarenko V. I., “Haos v fazovoj dinamike oscillyatora Van der Polya s modulirovannoj dobrotnost'yu i dopolnitel'noj zapazdyvayushchej obratnoj svyaz'yu”, Izvestiya vysshih uchebnyh zavedenij. Prikladnaya nelinejnaya dinamika, 18:1 (2010), 11–23 | Zbl
[17] Berezin I. S., ZHidkov N. P., Metody vychislenij, v. 2, M.-L., 1967, 464 pp.
[18] Tverdyj D. A., Parovik R. I., “Programma chislennogo rascheta zadachi Koshi dlya uravneniya Rikkati s proizvodnoj drobnogo peremennogo poryadka”, Fundamental'nye issledovaniya, 8-1 (2017), 98–103
[19] Feder E., Fraktaly, Mir, M., 1991