On the question of the construction of cognitive maps for data mining
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 101-106

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of constructing an optimal cognitive maps consists in optimizing the input data and the dimension data structure of a cognitive map. Pro-optimization problem occurs when large amounts of input data. Optimization of time-dimension data is clustering the input data and as a method of polarization-clusters using hierarchical agglomerative method. Cluster analysis allows to divide the data set into a finite number of homogeneous groups. Optimization of the structurery cognitive map is automatically tuning the balance of influence on each other concepts of machine learning methods, particularly the method of training the neural network.
Keywords: cognitive map, cluster analysis, neural network training set, fuzzy sets.
@article{VKAM_2016_5_a14,
     author = {R. A. Zhilov},
     title = {On the question of the construction of cognitive maps for data mining},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {101--106},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_5_a14/}
}
TY  - JOUR
AU  - R. A. Zhilov
TI  - On the question of the construction of cognitive maps for data mining
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 101
EP  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_5_a14/
LA  - ru
ID  - VKAM_2016_5_a14
ER  - 
%0 Journal Article
%A R. A. Zhilov
%T On the question of the construction of cognitive maps for data mining
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 101-106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2016_5_a14/
%G ru
%F VKAM_2016_5_a14
R. A. Zhilov. On the question of the construction of cognitive maps for data mining. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2016), pp. 101-106. http://geodesic.mathdoc.fr/item/VKAM_2016_5_a14/