On a dynamic hereditarity system that simulates the economic cycle
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 55-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a mathematical model that generalizes the famous Kondratiev cycles model (model Dubovskiy) used to predict economic crises. This generalization is to integrate the memory effect, which occurs frequently in the economic system. With the help of numerical methods, to receive a generalized model, according to which the phase paths have been built.
Mots-clés : cycles, the fractal dimension.
Keywords: the economic crisis, the model Dubovskiy, fractional derivative operator Gerasimova-Caputo, a memory effect
@article{VKAM_2016_2_a8,
     author = {D. V. Makarov},
     title = {On a dynamic hereditarity system that simulates the economic cycle},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {55--61},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a8/}
}
TY  - JOUR
AU  - D. V. Makarov
TI  - On a dynamic hereditarity system that simulates the economic cycle
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2016
SP  - 55
EP  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2016_2_a8/
LA  - ru
ID  - VKAM_2016_2_a8
ER  - 
%0 Journal Article
%A D. V. Makarov
%T On a dynamic hereditarity system that simulates the economic cycle
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2016
%P 55-61
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2016_2_a8/
%G ru
%F VKAM_2016_2_a8
D. V. Makarov. On a dynamic hereditarity system that simulates the economic cycle. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 55-61. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a8/

[1] Parovik R. I., “Modelirovanie vybora rukovodstvom vysshego uchebnogo zavedeniya optimalnogo resheniya, soglasovannogo s upravlyayuschimi resheniyami ego filialov”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2013, no. 1(6), 5–11

[2] Kondratev N. D., Oparin D. N., Bolshie tsikly kon'yunktury, Institut ekonomiki, M., 1928, 287 pp.

[3] Mensch G., Stalemate in Technology. Innovations Overcome the Depression, Ballinger Pub Co., Cambrg., 1979, 241 pp.

[4] Dubovskii S. V., “Ob'ekt modelirovaniya – tsikl Kondrateva”, Matematicheskoe modelirovanie, 7:6 (1995), 65–74 | MR

[5] Dubovskii S. V., “Modelirovanie tsiklov Kondrateva i prognozirovanie krizisov”, Kondratevskie volny. Aspekty i perspektivy, ed. A. A. Akaev, Uchitel, Volgograd, 2012, 179–188

[6] Dubovskii S. V., “Prognozirovanie katastrof (na primere tsiklov N.D. Kondrateva)”, Obschestvennye nauki i sovremennost, 1993, no. 5, 82–91 | MR

[7] Makarov D. V., “Ekonomiko-matematicheskoe modelirovanie innovatsionnykh sistem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 66–70

[8] Makarov D. V., Parovik R. I., “Obobschennaya matematicheskaya model Dubovskogo dlya prognozirovaniya ekonomicheskikh krizisov”, Nauchno-tekhnicheskii vestnik Povolzhya, 2016, no. 1, 74–77

[9] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[10] Boleantu M., “Fractional dynamical systems and applications in economy”, Differential Geometry - Dynamical Systems, 10 (2008), 62–70 | MR | Zbl

[11] Yiding Y., Lei H., Guanchun L., “Modeling and application of new nonlinear fractional financial model”, Journal of Applied Mathematics, 2013 | MR

[12] Tejado I., Duarte V., Nuno V., Fractional Calculus in Economic Growth Modeling. (The Portuguese case. Conference: 2014 International Conference on Fractional Differentiation and its Applications (FDA'14))

[13] Mendes R. V., “A fractional calculus interpretation of the fractional volatility model”, Nonlinear Dyn., 2008

[14] Zhenhua H., Xiaokang T., “A new discrete economic model involving generalized fractal derivative”, Advances in Difference Equations, 65 (2015) | DOI | MR | Zbl

[15] Shpilko Ya. E., Solomko A. A., Parovik R. I., “Parametrizatsiya uravneniya Samuelsona v modeli Evansa ob ustanovlenii ravnovesno tseny na rynke odnogo tovara”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, no. 2(5), 33–36

[16] Samuta V. V., Strelova V. A., Parovik R. I., “Nelokalnaya model neoklassicheskogo ekonomicheskogo rosta Solou”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2012, no. 2(5), 37–41

[17] Nakhusheva Z. A., “Ob odnoi odnosektornoi makroekonomicheskoi modeli dolgosrochnogo prognozirovaniya”, Doklady AMAN, 14:1 (2012), 124–127

[18] Parovik R. I., Matematicheskoe modelirovanie lineinykh ereditarnykh ostsillyatorov, KamGU imeni Vitusa Beringa, Petropavlovsk-Kamchatskii, 2015, 178 pp.