Keywords: the economic crisis, the model Dubovskiy, fractional derivative operator Gerasimova-Caputo, a memory effect
@article{VKAM_2016_2_a8,
author = {D. V. Makarov},
title = {On a dynamic hereditarity system that simulates the economic cycle},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {55--61},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2016_2_a8/}
}
D. V. Makarov. On a dynamic hereditarity system that simulates the economic cycle. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2016), pp. 55-61. http://geodesic.mathdoc.fr/item/VKAM_2016_2_a8/
[1] Parovik R. I., “Modelirovanie vybora rukovodstvom vysshego uchebnogo zavedeniya optimalnogo resheniya, soglasovannogo s upravlyayuschimi resheniyami ego filialov”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2013, no. 1(6), 5–11
[2] Kondratev N. D., Oparin D. N., Bolshie tsikly kon'yunktury, Institut ekonomiki, M., 1928, 287 pp.
[3] Mensch G., Stalemate in Technology. Innovations Overcome the Depression, Ballinger Pub Co., Cambrg., 1979, 241 pp.
[4] Dubovskii S. V., “Ob'ekt modelirovaniya – tsikl Kondrateva”, Matematicheskoe modelirovanie, 7:6 (1995), 65–74 | MR
[5] Dubovskii S. V., “Modelirovanie tsiklov Kondrateva i prognozirovanie krizisov”, Kondratevskie volny. Aspekty i perspektivy, ed. A. A. Akaev, Uchitel, Volgograd, 2012, 179–188
[6] Dubovskii S. V., “Prognozirovanie katastrof (na primere tsiklov N.D. Kondrateva)”, Obschestvennye nauki i sovremennost, 1993, no. 5, 82–91 | MR
[7] Makarov D. V., “Ekonomiko-matematicheskoe modelirovanie innovatsionnykh sistem”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2014, no. 1(8), 66–70
[8] Makarov D. V., Parovik R. I., “Obobschennaya matematicheskaya model Dubovskogo dlya prognozirovaniya ekonomicheskikh krizisov”, Nauchno-tekhnicheskii vestnik Povolzhya, 2016, no. 1, 74–77
[9] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[10] Boleantu M., “Fractional dynamical systems and applications in economy”, Differential Geometry - Dynamical Systems, 10 (2008), 62–70 | MR | Zbl
[11] Yiding Y., Lei H., Guanchun L., “Modeling and application of new nonlinear fractional financial model”, Journal of Applied Mathematics, 2013 | MR
[12] Tejado I., Duarte V., Nuno V., Fractional Calculus in Economic Growth Modeling. (The Portuguese case. Conference: 2014 International Conference on Fractional Differentiation and its Applications (FDA'14))
[13] Mendes R. V., “A fractional calculus interpretation of the fractional volatility model”, Nonlinear Dyn., 2008
[14] Zhenhua H., Xiaokang T., “A new discrete economic model involving generalized fractal derivative”, Advances in Difference Equations, 65 (2015) | DOI | MR | Zbl
[15] Shpilko Ya. E., Solomko A. A., Parovik R. I., “Parametrizatsiya uravneniya Samuelsona v modeli Evansa ob ustanovlenii ravnovesno tseny na rynke odnogo tovara”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, no. 2(5), 33–36
[16] Samuta V. V., Strelova V. A., Parovik R. I., “Nelokalnaya model neoklassicheskogo ekonomicheskogo rosta Solou”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2012, no. 2(5), 37–41
[17] Nakhusheva Z. A., “Ob odnoi odnosektornoi makroekonomicheskoi modeli dolgosrochnogo prognozirovaniya”, Doklady AMAN, 14:1 (2012), 124–127
[18] Parovik R. I., Matematicheskoe modelirovanie lineinykh ereditarnykh ostsillyatorov, KamGU imeni Vitusa Beringa, Petropavlovsk-Kamchatskii, 2015, 178 pp.