The technique of increase the efficiency of learning neural Kohonen maps for recognition of perturbations geoacoustic emission
    
    
  
  
  
      
      
      
        
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2014), pp. 75-80
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This work is dedicated to technique of training Kohonen maps on the example of geoacoustical signal in the subrange 1500-6000 Hz. Describes the parameters of learning the Kohonen maps to classify anomalies in geoacoustical signal on different types
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
geoacoustical emission, disturbance, neural Kohonen maps, learning.
Mots-clés : geoacoustic signal
                    
                  
                
                
                Mots-clés : geoacoustic signal
@article{VKAM_2014_2_a10,
     author = {A. V. Shadrin},
     title = {The technique of increase the efficiency of learning neural {Kohonen} maps for recognition of perturbations geoacoustic emission},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {75--80},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2014_2_a10/}
}
                      
                      
                    TY - JOUR AU - A. V. Shadrin TI - The technique of increase the efficiency of learning neural Kohonen maps for recognition of perturbations geoacoustic emission JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2014 SP - 75 EP - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2014_2_a10/ LA - ru ID - VKAM_2014_2_a10 ER -
%0 Journal Article %A A. V. Shadrin %T The technique of increase the efficiency of learning neural Kohonen maps for recognition of perturbations geoacoustic emission %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2014 %P 75-80 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2014_2_a10/ %G ru %F VKAM_2014_2_a10
A. V. Shadrin. The technique of increase the efficiency of learning neural Kohonen maps for recognition of perturbations geoacoustic emission. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 2 (2014), pp. 75-80. http://geodesic.mathdoc.fr/item/VKAM_2014_2_a10/