Moves on special spines
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 129-133
Cet article a éte moissonné depuis la source Math-Net.Ru
The main theorem of the theory of special spines states that any two spines of the same 3-manifold can be related be a sequence of moves $T^{\pm 1}$, where $T$ is performed in a regular neighborhood of an edge of a spine and increases the number of its true vertices by one. However, even in simple cases the proof of the theorem is not very helpful for finding explicit sequences of moves. We describe here a first nontrivial example of such sequence. The sequence relates two special spines of the 3-sphere with four removed 3-balls. This result answers a question of Scott Carter, who wanted to get such sequence.
Keywords:
3-manifold, special spine, $2\to 3$ moves.
@article{VCHGU_2012_15_a10,
author = {S. V. Matveev},
title = {Moves on special spines},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {129--133},
year = {2012},
number = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a10/}
}
S. V. Matveev. Moves on special spines. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 15 (2012), pp. 129-133. http://geodesic.mathdoc.fr/item/VCHGU_2012_15_a10/
[1] S. V. Matveev, Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, Izd-vo MTsNMO, M., 2007, 453 pp.
[2] S. V. Matveev, “Preobrazovaniya spetsialnykh spainov i gipoteza Zimana”, Izv. Akad. nauk SSSR. Cer. mat., 51:5 (1987), 1104–1116 | Zbl