Mots-clés : total electron content
@article{UZKU_2021_163_1_a4,
author = {I. A. Nasyrov and D. A. Kogogin and A. V. Shindin and S. M. Grach and R. V. Zagretdinov and A. B. Beletsky and V. V. Emeljanov},
title = {The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {59--76},
year = {2021},
volume = {163},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/}
}
TY - JOUR AU - I. A. Nasyrov AU - D. A. Kogogin AU - A. V. Shindin AU - S. M. Grach AU - R. V. Zagretdinov AU - A. B. Beletsky AU - V. V. Emeljanov TI - The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2021 SP - 59 EP - 76 VL - 163 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/ LA - ru ID - UZKU_2021_163_1_a4 ER -
%0 Journal Article %A I. A. Nasyrov %A D. A. Kogogin %A A. V. Shindin %A S. M. Grach %A R. V. Zagretdinov %A A. B. Beletsky %A V. V. Emeljanov %T The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2021 %P 59-76 %V 163 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/ %G ru %F UZKU_2021_163_1_a4
I. A. Nasyrov; D. A. Kogogin; A. V. Shindin; S. M. Grach; R. V. Zagretdinov; A. B. Beletsky; V. V. Emeljanov. The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/
[1] Shindin A. V., Grach S. M., Sergeev E. N., Ryabov A. V., “Spatial correlation of large-scale plasma density inhomogeneities (measured by GPS signal analysis) and regions of 630 nm artificial optical emissions in the HF-pumped ionosphere”, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 4:1 (2012), 105–113 (In Russian)
[2] Kogogin D. A., Shindin A. V., Nasyrov I. A., Grach S. M., “Simultaneous measurements of variations in the artificial airglow and the total electron content of the ionosphere caused by powerful radio waves of “SURA” facility”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 3, 2016, 434–447 (In Russian)
[3] Grach S. M., Nasyrov I. A., Kogogin D. A., Shindin A. V., Dementiev V. O., Sergeev E. N., Akchurin A. D. On the connection between the spatial behavior of the total electron content of the ionosphere on the GPS signal path and the ionospheric artificial airglow in the 630 nm line, Radiophys. Quantum Electron., 61:3 (2018), 161–175 | DOI
[4] Grach S. M., Nasyrov I. A., Kogogin D. A., Shindin A. V., Sergeev E. N., Razi Mousavi S. A., “Mutual allocation of the artificial airglow patches and large-scale irregularities in the HF-pumped ionosphere”, Geophys. Res. Lett., 45:23 (2018), 12,749–12,756 | DOI
[5] Kogogin D., Nasyrov I., Shindin A., Maksimov D., Grach S., Dementiev V., Zagretdinov R., “The structure and dynamics of the HF-pumped ionosphere based on a joint analysis of the artificial airglow spots and two-dimensional maps of the total electron content”, 2019 Russian Open Conference on Radio Wave Propagation, RWP, Proceedings, IEEE, 2019, 300–303 | DOI
[6] Kogogin D. A., Nasyrov I. A., Shindin A. V., Grach S. M., Maksimov D. S., Zagretdinov R. V., Dementiev V. O., “Dynamic changes of the ionospheric artificial airglow region caused by high-power radio waves based on a joint analysis of night-sky snapshots in the 630 nm line and total electron content variation maps”, Radiophys. Quantum Electron., 63:2 (2020), 83–96 | DOI
[7] Shindin A. V., Klimenko V. V., Kogogin D. A., Beletsky A. B., Grach S. M., Nasyrov I. A., Sergeev E. N., “Spatial characteristics of the 630-nm artificial ionospheric airglow generation region during the SURA facility pumping”, Radiophys. Quantum Electron., 60:11 (2018), 849–865 | DOI
[8] IGRF-13. The International Geomagnetic Reference Field. 13th Generation, , International Association of Geomagnetism and Aeronomy (IAGA), Division V-MOD: Geomagnetic Field Modeling https://www.ngdc.noaa.gov/IAGA/vmod/home.html/
[9] Klimenko V. V., Grach S. M., Sergeev E. N., Shindin A. V., “Features of the ionospheric artificial airglow caused by ohmic heating and plasma turbulence-accelerated electrons induced by HF pumping of the Sura heating facility”, Radiophys. Quantum Electron., 60:6 (2017), 431–449 | DOI
[10] IRI-2012 International Reference Ionosphere, National Aeronautics and Space Administration, NASA/GSFC, Heliospheric Physics Laboratory, Code 672; Fairfax, Va.: George Mason University, Space Weather Laboratory, Greenbelt, Md., 2012 https://iri.gsfc.nasa.gov/
[11] Tereshchenko E. D., Khudukon B. Z., Gurevich A. V., Zybin K. P., Frolov V. L., Myasnikov E. N., Muravieva N. V., Carlson H. C., “Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes”, Phys. Lett. A, 325:5–6 (2004), 381–388 | DOI