The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 59-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of plotting a spatial distribution pattern of the total electron content (TEC) in the region of artificial airglow of the ionosphere in the red line of the optical spectrum $(\lambda = 630$ nm) was developed during the experiments on disturbances of the ionosphere by powerful radio emission of the SURA facility. To test the method, a measurement session on August $29$, $2016$ from $18:40$ to $20:10$ UTC, i.e., when the ionospheric and weather conditions varied slightly and allowed simultaneous optical measurements of the artificial airglow of the ionosphere from two spatially separated sites (Vasilsursk near the SURA facility and Magnitka lying $\sim 170$ km East of the SURA facility), was selected. As a result of the simultaneous optical measurements, the area of artificial airglow was plotted in a three-dimensional projection and the spatial position of the disturbed region of the ionosphere stimulated by the powerful radio emission of the SURA facility was determined. The method of plotting a spatial pattern of the electron density distribution in the disturbed region of the ionosphere is based on a joint analysis of variations in the TEC on the radio paths “navigation satellite – ground receiving site” for a number of receiving stations of the global navigation satellite systems located within a radius of $\sim 160$ km from the SURA facility. By using this method, the values of electron density variations for different spatial cross-sections of the disturbed region of the ionosphere can be obtained. The joint analysis of the experimental data carried out with the help of the method under consideration showed that in the field of the powerful radio wave a disturbed region with the complex structure formed along the magnetic field lines. Plasma inhomogeneities with an increased electron density occurred at the boundaries of the region with a reduced electron concentration. The difference $\Delta N_e/N_e$ at the boundaries of the disturbed region, i.e., between the regions with increased and decreased electron density, might reach $10\%$. The size of the disturbed region is $l_{\bot}\approx45\div60$ km across and $l_{\parallel}\gtrsim70$ km along the Earth's magnetic field lines.
Keywords: ionosphere, GNSS, artificial ionospheric inhomogeneities, powerful short-wave radio emission, SURA facility, stimulated airglow of ionosphere.
Mots-clés : total electron content
@article{UZKU_2021_163_1_a4,
     author = {I. A. Nasyrov and D. A. Kogogin and A. V. Shindin and S. M. Grach and R. V. Zagretdinov and A. B. Beletsky and V. V. Emeljanov},
     title = {The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {59--76},
     year = {2021},
     volume = {163},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/}
}
TY  - JOUR
AU  - I. A. Nasyrov
AU  - D. A. Kogogin
AU  - A. V. Shindin
AU  - S. M. Grach
AU  - R. V. Zagretdinov
AU  - A. B. Beletsky
AU  - V. V. Emeljanov
TI  - The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2021
SP  - 59
EP  - 76
VL  - 163
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/
LA  - ru
ID  - UZKU_2021_163_1_a4
ER  - 
%0 Journal Article
%A I. A. Nasyrov
%A D. A. Kogogin
%A A. V. Shindin
%A S. M. Grach
%A R. V. Zagretdinov
%A A. B. Beletsky
%A V. V. Emeljanov
%T The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2021
%P 59-76
%V 163
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/
%G ru
%F UZKU_2021_163_1_a4
I. A. Nasyrov; D. A. Kogogin; A. V. Shindin; S. M. Grach; R. V. Zagretdinov; A. B. Beletsky; V. V. Emeljanov. The method of plotting a spatial distribution pattern of the total electron content in the region of artificial airglow of the ionosphere. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 163 (2021) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/UZKU_2021_163_1_a4/

[1] Shindin A. V., Grach S. M., Sergeev E. N., Ryabov A. V., “Spatial correlation of large-scale plasma density inhomogeneities (measured by GPS signal analysis) and regions of 630 nm artificial optical emissions in the HF-pumped ionosphere”, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 4:1 (2012), 105–113 (In Russian)

[2] Kogogin D. A., Shindin A. V., Nasyrov I. A., Grach S. M., “Simultaneous measurements of variations in the artificial airglow and the total electron content of the ionosphere caused by powerful radio waves of “SURA” facility”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 3, 2016, 434–447 (In Russian)

[3] Grach S. M., Nasyrov I. A., Kogogin D. A., Shindin A. V., Dementiev V. O., Sergeev E. N., Akchurin A. D. On the connection between the spatial behavior of the total electron content of the ionosphere on the GPS signal path and the ionospheric artificial airglow in the 630 nm line, Radiophys. Quantum Electron., 61:3 (2018), 161–175 | DOI

[4] Grach S. M., Nasyrov I. A., Kogogin D. A., Shindin A. V., Sergeev E. N., Razi Mousavi S. A., “Mutual allocation of the artificial airglow patches and large-scale irregularities in the HF-pumped ionosphere”, Geophys. Res. Lett., 45:23 (2018), 12,749–12,756 | DOI

[5] Kogogin D., Nasyrov I., Shindin A., Maksimov D., Grach S., Dementiev V., Zagretdinov R., “The structure and dynamics of the HF-pumped ionosphere based on a joint analysis of the artificial airglow spots and two-dimensional maps of the total electron content”, 2019 Russian Open Conference on Radio Wave Propagation, RWP, Proceedings, IEEE, 2019, 300–303 | DOI

[6] Kogogin D. A., Nasyrov I. A., Shindin A. V., Grach S. M., Maksimov D. S., Zagretdinov R. V., Dementiev V. O., “Dynamic changes of the ionospheric artificial airglow region caused by high-power radio waves based on a joint analysis of night-sky snapshots in the 630 nm line and total electron content variation maps”, Radiophys. Quantum Electron., 63:2 (2020), 83–96 | DOI

[7] Shindin A. V., Klimenko V. V., Kogogin D. A., Beletsky A. B., Grach S. M., Nasyrov I. A., Sergeev E. N., “Spatial characteristics of the 630-nm artificial ionospheric airglow generation region during the SURA facility pumping”, Radiophys. Quantum Electron., 60:11 (2018), 849–865 | DOI

[8] IGRF-13. The International Geomagnetic Reference Field. 13th Generation, , International Association of Geomagnetism and Aeronomy (IAGA), Division V-MOD: Geomagnetic Field Modeling https://www.ngdc.noaa.gov/IAGA/vmod/home.html/

[9] Klimenko V. V., Grach S. M., Sergeev E. N., Shindin A. V., “Features of the ionospheric artificial airglow caused by ohmic heating and plasma turbulence-accelerated electrons induced by HF pumping of the Sura heating facility”, Radiophys. Quantum Electron., 60:6 (2017), 431–449 | DOI

[10] IRI-2012 International Reference Ionosphere, National Aeronautics and Space Administration, NASA/GSFC, Heliospheric Physics Laboratory, Code 672; Fairfax, Va.: George Mason University, Space Weather Laboratory, Greenbelt, Md., 2012 https://iri.gsfc.nasa.gov/

[11] Tereshchenko E. D., Khudukon B. Z., Gurevich A. V., Zybin K. P., Frolov V. L., Myasnikov E. N., Muravieva N. V., Carlson H. C., “Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes”, Phys. Lett. A, 325:5–6 (2004), 381–388 | DOI