Mots-clés : structure
@article{UZKU_2019_161_3_a9,
author = {V. M. Zakharov and S. V. Shalagin and B. F. Aminov},
title = {Representation of the stochastic matrix sets with given properties based on autonomous automatic models},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {456--467},
year = {2019},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/}
}
TY - JOUR AU - V. M. Zakharov AU - S. V. Shalagin AU - B. F. Aminov TI - Representation of the stochastic matrix sets with given properties based on autonomous automatic models JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 456 EP - 467 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/ LA - ru ID - UZKU_2019_161_3_a9 ER -
%0 Journal Article %A V. M. Zakharov %A S. V. Shalagin %A B. F. Aminov %T Representation of the stochastic matrix sets with given properties based on autonomous automatic models %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 456-467 %V 161 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/ %G ru %F UZKU_2019_161_3_a9
V. M. Zakharov; S. V. Shalagin; B. F. Aminov. Representation of the stochastic matrix sets with given properties based on autonomous automatic models. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 456-467. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/
[1] M. Katehakis, L. Smit, “A successive lumping procedure for a class of Markov chains”, Probab. Eng. Inf. Sci, 26:4 (2012), 483–508 | DOI | MR | Zbl
[2] V. M. Deundyak, M. A. Zhdanova, “Polynomial representation of hidden semi-Markov model of the Ferguson type”, Vestn. VGU: Sist. Anal. Inf. Tekhnol., 2013, no. 2, 71–78 (In Russian)
[3] B. A. Pogorelov, M. A. Pudovkina, “On generalizations of Markov's approach to research of block ciphers”, Prikl. Diskr. Mat. Prilozh., 2014, no. 7, 51–52 (In Russian)
[4] B. Geiger, C. Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”, Adv. Appl. Probab., 51:4 (2014), 1114–1132 | DOI | MR | Zbl
[5] V. A. Raikhlin, I. S. Vershinin, R. F. Gibadullin, S. V. Pystogov, “Reliable recognition of masked cartographic scenes during transmission over the network”, 2016 Int. Sib. Conf. on Control and Communications (SIBCON), IEEE, 2016, 1–5 | DOI
[6] R. G. Bukharaev, Fundamentals of the Theory of Probabilistic Automata, Nauka, M., 1985, 287 pp. (In Russian)
[7] B. R. Levin, V. Schwartz, Probabilistic Models and Methods in Communication and Management Systems, Radio Svyaz', M., 1985, 312 pp. (In Russian)
[8] V. I. Glova, V. M. Zakharov, V. A. Pesoshin, S. V. Shalagin, Modeling. Probabilistic Discrete Models, ed. Zakharov V.M., ABAK, Kazan, 1998, 52 pp. (In Russian)
[9] V. M. Zakharov, N. N. Nurmeev, F. I. Salimov, S. V. Shalagin, “Classification of stochastic ergodic matrices by cluster and discriminant analysis methods”, Computer Science Research, Otechestvo, Kazan, 2000, 91–106 (In Russian)
[10] A. R. Nurutdinova, S. V. Shalagin, “Multi-parametric classification of automaton Markov models based on the sequences they generate”, Prikl. Diskr. Mat., 2010, no. 4, 41–54 (In Russian)
[11] V. P. Borovikov, Statistica: Art of Computer-Aided Data Analysis, Piter, St. Petersburg, 2003, 700 pp. (In Russian) | MR
[12] J. G. Kemeny, J. L. Snell, Finite Markov Chains, D. van Nostrand Co. Inc., Princeton–New Jersey–Toronto–London–New York, 1960, viii+210 pp. | MR | Zbl
[13] V. M. Zakharov, B. F. Eminov, S. V. Shalagin, “Representing lumped Markov chains by minimal polynomials over field GF(q)”, J. Phys.: Conf. Ser., 1015 (2018), 032033, 6 pp. | DOI
[14] R. G. Bukharaev, V. M. Zakharov, Managed Random Code Generators, Kazan. Gos. Univ., Kazan, 1978, 160 pp. (In Russian)
[15] V. M. Chentsov, “On a method for the synthesis of an autonomous stochastic automaton”, Kibernetika, 1968, no. 3, 32–35 (In Russian) | Zbl
[16] B. F. Eminov, V. M. Zakharov, “Analysis of decomposition algorithms binary rational stochastic matrices on a combination of Boolean matrices”, Inf. Tekhnol., 2008, no. 3, 54–59 (In Russian)
[17] I. N. Bronstein, K. A. Semendyaev, A Guide on Mathematics for Engineers and Students of Technical Universities, Nauka, M., 1986, 544 pp. (In Russian)
[18] E. L. Stolov, “A class of generators of pseudo-Markov chains”, Issled. Prikl. Mat., 8, 1980, 66–71 (In Russian) | MR
[19] A. P. Alferov, A. Yu. Zubov, Cryptography Basics, Gelios ARV, M., 2002, 480 pp. (In Russian)
[20] D. B. Carvate, M. B. Pursley, “Cross-correlation properties of pseudorandom and related sequences”, Zh. Inst. Inzh. Elektrotekh. Radioelektron., 68:5 (1980), 59–90 (In Russian)
[21] V. I. Nechaev, Elements of Cryptography. Fundamentals of Information Security Theory, Vyssh. Shk., M., 1999, 109 pp. (In Russian) | MR
[22] R. Kh. Latypov, The Mathematical Basis of Information Coding and Cryptography, Kazan. Gos. Univ., Kazan, 2005, 60 pp. (In Russian)