Representation of the stochastic matrix sets with given properties based on autonomous automatic models
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 456-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper considers the methods of construction (presentation) of the sets of ergodic stochastic matrices using automaton models and determination of the power estimates of the generated sets. The research aimed at developing algorithms for constructing the sets of ergodic stochastic matrices with rational elements with given structures and limit vector based on the automaton probabilistic and deterministic models represented by autonomous automata, as well as at estimating the power of the obtained sets of stochastic matrices depending on the dimensions of the given automaton models. The constructed sets of ergodic stochastic matrices are focused on solving the problem of classification of automaton probabilistic models according to certain criteria (parameters) of similarities or differences between the structures of ergodic matrices by the methods of applied multidimensional mathematical statistics. The developed algorithms enable to form a variety of sets of stochastic matrices by changing the transition functions in the considered automata, output functions in autonomous deterministic automaton, and random entry of probabilistic automaton. It was shown that the transition function of autonomous probabilistic automaton allows makes it possible to develop, based on the proposed functioning algorithm, a set of ergodic stochastic matrices with different probabilistic automaton powers and structures based on the permutations of a set of states with repetitions and changes in the probability distribution of the input random variable. It was demonstrated that the sets of ergodic stochastic matrices with different power characteristics and a limit vector based on rearrangements in a set of output letters with repetitions can be formed by changing the functions of the the autonomous deterministic automaton with the help of the developed algorithm. The estimates of the powers of the sets of ergodic stochastic matrices with rational elements represented by autonomous probabilistic and deterministic automata for given restrictions were provided. These estimates reflect the dependencies of the values of powers of the generated sets of stochastic matrices on the dimension characteristics of the automaton models. The proposed construction algorithms of the sets of ergodic stochastic matrices are complementary with respect to the solved problems.
Keywords: set of stochastic matrices, limit vector, autonomous automatic models, set power estimates.
Mots-clés : structure
@article{UZKU_2019_161_3_a9,
     author = {V. M. Zakharov and S. V. Shalagin and B. F. Aminov},
     title = {Representation of the stochastic matrix sets with given properties based on autonomous automatic models},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {456--467},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/}
}
TY  - JOUR
AU  - V. M. Zakharov
AU  - S. V. Shalagin
AU  - B. F. Aminov
TI  - Representation of the stochastic matrix sets with given properties based on autonomous automatic models
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 456
EP  - 467
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/
LA  - ru
ID  - UZKU_2019_161_3_a9
ER  - 
%0 Journal Article
%A V. M. Zakharov
%A S. V. Shalagin
%A B. F. Aminov
%T Representation of the stochastic matrix sets with given properties based on autonomous automatic models
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 456-467
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/
%G ru
%F UZKU_2019_161_3_a9
V. M. Zakharov; S. V. Shalagin; B. F. Aminov. Representation of the stochastic matrix sets with given properties based on autonomous automatic models. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 456-467. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a9/

[1] M. Katehakis, L. Smit, “A successive lumping procedure for a class of Markov chains”, Probab. Eng. Inf. Sci, 26:4 (2012), 483–508 | DOI | MR | Zbl

[2] V. M. Deundyak, M. A. Zhdanova, “Polynomial representation of hidden semi-Markov model of the Ferguson type”, Vestn. VGU: Sist. Anal. Inf. Tekhnol., 2013, no. 2, 71–78 (In Russian)

[3] B. A. Pogorelov, M. A. Pudovkina, “On generalizations of Markov's approach to research of block ciphers”, Prikl. Diskr. Mat. Prilozh., 2014, no. 7, 51–52 (In Russian)

[4] B. Geiger, C. Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”, Adv. Appl. Probab., 51:4 (2014), 1114–1132 | DOI | MR | Zbl

[5] V. A. Raikhlin, I. S. Vershinin, R. F. Gibadullin, S. V. Pystogov, “Reliable recognition of masked cartographic scenes during transmission over the network”, 2016 Int. Sib. Conf. on Control and Communications (SIBCON), IEEE, 2016, 1–5 | DOI

[6] R. G. Bukharaev, Fundamentals of the Theory of Probabilistic Automata, Nauka, M., 1985, 287 pp. (In Russian)

[7] B. R. Levin, V. Schwartz, Probabilistic Models and Methods in Communication and Management Systems, Radio Svyaz', M., 1985, 312 pp. (In Russian)

[8] V. I. Glova, V. M. Zakharov, V. A. Pesoshin, S. V. Shalagin, Modeling. Probabilistic Discrete Models, ed. Zakharov V.M., ABAK, Kazan, 1998, 52 pp. (In Russian)

[9] V. M. Zakharov, N. N. Nurmeev, F. I. Salimov, S. V. Shalagin, “Classification of stochastic ergodic matrices by cluster and discriminant analysis methods”, Computer Science Research, Otechestvo, Kazan, 2000, 91–106 (In Russian)

[10] A. R. Nurutdinova, S. V. Shalagin, “Multi-parametric classification of automaton Markov models based on the sequences they generate”, Prikl. Diskr. Mat., 2010, no. 4, 41–54 (In Russian)

[11] V. P. Borovikov, Statistica: Art of Computer-Aided Data Analysis, Piter, St. Petersburg, 2003, 700 pp. (In Russian) | MR

[12] J. G. Kemeny, J. L. Snell, Finite Markov Chains, D. van Nostrand Co. Inc., Princeton–New Jersey–Toronto–London–New York, 1960, viii+210 pp. | MR | Zbl

[13] V. M. Zakharov, B. F. Eminov, S. V. Shalagin, “Representing lumped Markov chains by minimal polynomials over field GF(q)”, J. Phys.: Conf. Ser., 1015 (2018), 032033, 6 pp. | DOI

[14] R. G. Bukharaev, V. M. Zakharov, Managed Random Code Generators, Kazan. Gos. Univ., Kazan, 1978, 160 pp. (In Russian)

[15] V. M. Chentsov, “On a method for the synthesis of an autonomous stochastic automaton”, Kibernetika, 1968, no. 3, 32–35 (In Russian) | Zbl

[16] B. F. Eminov, V. M. Zakharov, “Analysis of decomposition algorithms binary rational stochastic matrices on a combination of Boolean matrices”, Inf. Tekhnol., 2008, no. 3, 54–59 (In Russian)

[17] I. N. Bronstein, K. A. Semendyaev, A Guide on Mathematics for Engineers and Students of Technical Universities, Nauka, M., 1986, 544 pp. (In Russian)

[18] E. L. Stolov, “A class of generators of pseudo-Markov chains”, Issled. Prikl. Mat., 8, 1980, 66–71 (In Russian) | MR

[19] A. P. Alferov, A. Yu. Zubov, Cryptography Basics, Gelios ARV, M., 2002, 480 pp. (In Russian)

[20] D. B. Carvate, M. B. Pursley, “Cross-correlation properties of pseudorandom and related sequences”, Zh. Inst. Inzh. Elektrotekh. Radioelektron., 68:5 (1980), 59–90 (In Russian)

[21] V. I. Nechaev, Elements of Cryptography. Fundamentals of Information Security Theory, Vyssh. Shk., M., 1999, 109 pp. (In Russian) | MR

[22] R. Kh. Latypov, The Mathematical Basis of Information Coding and Cryptography, Kazan. Gos. Univ., Kazan, 2005, 60 pp. (In Russian)