A mesh method for solving fourth-order quasilinear elliptic equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 405-422
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mixed finite element method for solving the Dirichlet problem for a fourth-order quasilinear elliptic equation in divergent form was proposed and investigated. It was assumed that the domain in which the problem is solved is bounded and has a dimension greater or equal to two. When constructing the finite element scheme, all the second derivatives of the required solution were chosen as auxiliary unknowns. The usual triangulation of the domain by Lagrangian simplicial (triangular) elements of orders two and higher was used. Under the assumption that the operator of the original problem satisfies the standard conditions of bounded nonlinearity and coercivity, the existence of an approximate solution for any value of the discretization parameter was proved. The uniqueness of the approximate solution was established under tighter restrictions, namely, assuming the Lipschitz-continuity and the strong monotony of the differential operator. Under the same conditions, a two-layer iterative process was constructed, and the estimation of the convergence rate independent of the discretization parameter was proved. Accuracy estimates for the approximate solutions, optimal in the case of linearity of the differential equation, were obtained. The results of the application of the proposed technique to the problem of the equilibrium of a thin elastic plate were presented.
Keywords: mixed finite element method, accuracy estimates, iterative method, convergence rate estimates, theory of plates.
@article{UZKU_2019_161_3_a6,
     author = {M. M. Karchevsky},
     title = {A mesh method for solving fourth-order quasilinear elliptic equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {405--422},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/}
}
TY  - JOUR
AU  - M. M. Karchevsky
TI  - A mesh method for solving fourth-order quasilinear elliptic equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 405
EP  - 422
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/
LA  - ru
ID  - UZKU_2019_161_3_a6
ER  - 
%0 Journal Article
%A M. M. Karchevsky
%T A mesh method for solving fourth-order quasilinear elliptic equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 405-422
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/
%G ru
%F UZKU_2019_161_3_a6
M. M. Karchevsky. A mesh method for solving fourth-order quasilinear elliptic equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 405-422. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/

[1] S. G. Mikhlin, The Numerical Performance of Variational Methods, Wolters-Noordhoff Publ., Groningen, 1971, 373 pp. | MR | Zbl

[2] S. L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, M., 1974, 808 pp. (In Russian) | MR

[3] Sobolev S.L., Vaskevich V.L., The Theory of Cubature Formulas, Springer, 1997, 415 pp. | MR

[4] V. P. Mikhailov, “Existence of boundary values for metaharmonic functions”, Sb. Math., 190:10 (1999), 1417–1448 | DOI | DOI | MR | Zbl

[5] Ciarlet P.G., Mathematical Elasticity, v. II, Theory of Plates, North-Holland, Amsterdam, 1997, 497 pp. | MR

[6] S. P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959, 595 pp. | MR

[7] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Mijhoff Publ., 1983, 553 pp.

[8] I. I. Vorovich, Nonlinear Theory of Shallow Shells, Springer, 1999, 388 pp. | MR | Zbl

[9] Ciarlet P.G., Mathematical Elasticity, v. III, Theory of Shells, North-Holland, Amsterdam, 2000, 599 pp. | MR | Zbl

[10] P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, SIAM, 2002, xxiii+529 pp. | MR

[11] G. P. Astrakhantsev, “A method for the approximate solution of the Dirichlet problem for the biharmonic equation”, USSR Comput. Math. Math. Phys., 17:4 (1977), 157–175 | DOI | MR | Zbl

[12] G. M. Kobel'kov, “Iterative processes for some classes of difference schemes”, Chislennye Metody Mekh. Sploshnoi Sredy, 12:6 (1981), 38–48 (in Russian) | MR | Zbl

[13] G. M. Kobel'kov, “Reduction of a boundary value problem for a biharmonic equation to a problem of Stokes type”, Dokl. Akad. Nauk SSSR, 283:3 (1985), 539–541 (In Russian) | MR | Zbl

[14] G. M. Kobel'kov, “Reduction of a boundary value problem for the biharmonic equation to a problem with an operator of Stokes type”, Sov. Math. (Izv. Vyssh. Uchebn. Zaved.), 29:10 (1985), 39–59 | Zbl

[15] M. M. Karchevsky, “Some methods of solving the first boundary value problem for the biharmonic difference equation”, USSR Comput. Math. Math. Phys., 23:5 (1983), 41–47 | DOI | MR

[16] V. I. Ryazhskikh, M. I. Slyusarev, M. I. Popov, “Numerical integration of a biharmonic equation in square field”, Vestn. S. Peterb. Univ. Ser. 10, 2013, no. 1, 52–62 (In Russian)

[17] G. P. Astrakhantsev, “On a mixed finite-element method in problems of shell theory”, USSR. Comput. Math. Math. Phys., 29:5 (1989), 167–176 | DOI | MR | Zbl

[18] Yu. A. Dubinskii, “Quasilinear elliptic and parabolic equations of arbitrary order”, Russ. Math. Surv., 23:1 (1968), 45–91 | DOI | MR

[19] M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley Sons, 1974, 356 pp. | MR | MR

[20] C. Bernardi, “Optimal finite-element interpolation on curved domains”, SIAM J. Numer. Anal., 26:5 (1989), 1212–1240 | DOI | MR | Zbl

[21] M. Zlamal, SIAM J. Numer. Anal., 10:1 (1973), 229–240 | DOI | MR | Zbl

[22] V. G. Korneev, Schemes of High Orders of Accuracy for the Finite Element Method, Leningr. Gos. Univ., L., 1977, 206 pp. (In Russian)

[23] R. Z. Dautov, M. M. Karchevsky, Introduction to the Theory of Finite Element Method, Kazan. Univ., Kazan, 2011, 238 pp. (In Russian)

[24] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco–London–Amsterdam, 1964, 323 pp. | MR | Zbl

[25] M. M. Karchevsky, M. F. Pavlova, Equations of Mathematical Physics, Additional Chapters, Lan', St. Petersburg, 2016, 276 pp. (In Russian)

[26] A. A. Samarsky, E. S. Nikolaev, Numerical Methods for Grid Equations, Iterative methods, Birkhauser, Basel, 1989, 502 pp. | MR

[27] M. M. Karchevsky, “A mixed finite element method for nonlinear problems in the theory of plates”, Russ. Math., 36:7 (1992), 10–17 | MR

[28] J. P. Aubin, “Behavior of the error of the approximate solutions of boundary value problems for the linear elliptic operators by the Galerkin's and finite difference methods”, Ann. Scuola Norm. Super. Pisa, 21 (1967), 599–637 | MR | Zbl

[29] G. Strang, G. J. Fix, An Analysis of the Finite Element Method, Wellesley-Cambridge Press, 2008, 400 pp. | MR

[30] C. Bahriawati, C. Carstensen, “Three Matlab implementations of the lowest-order Raviart–Thomas Mfem with a posteriori error control”, Comput. Methods Appl. Math., 5:4 (2005), 333–361 | DOI | MR | Zbl

[31] R. Z. Dautov, Matlab Implementation of the Finite Element Method, Izd. Kazan. Univ., Kazan, 2014, 108 pp. (In Russian)

[32] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997, 419 pp. | MR | Zbl