Voir la notice du chapitre de livre
@article{UZKU_2019_161_3_a6,
author = {M. M. Karchevsky},
title = {A mesh method for solving fourth-order quasilinear elliptic equations},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {405--422},
year = {2019},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/}
}
TY - JOUR AU - M. M. Karchevsky TI - A mesh method for solving fourth-order quasilinear elliptic equations JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 405 EP - 422 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/ LA - ru ID - UZKU_2019_161_3_a6 ER -
%0 Journal Article %A M. M. Karchevsky %T A mesh method for solving fourth-order quasilinear elliptic equations %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 405-422 %V 161 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/ %G ru %F UZKU_2019_161_3_a6
M. M. Karchevsky. A mesh method for solving fourth-order quasilinear elliptic equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 405-422. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a6/
[1] S. G. Mikhlin, The Numerical Performance of Variational Methods, Wolters-Noordhoff Publ., Groningen, 1971, 373 pp. | MR | Zbl
[2] S. L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, M., 1974, 808 pp. (In Russian) | MR
[3] Sobolev S.L., Vaskevich V.L., The Theory of Cubature Formulas, Springer, 1997, 415 pp. | MR
[4] V. P. Mikhailov, “Existence of boundary values for metaharmonic functions”, Sb. Math., 190:10 (1999), 1417–1448 | DOI | DOI | MR | Zbl
[5] Ciarlet P.G., Mathematical Elasticity, v. II, Theory of Plates, North-Holland, Amsterdam, 1997, 497 pp. | MR
[6] S. P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959, 595 pp. | MR
[7] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Mijhoff Publ., 1983, 553 pp.
[8] I. I. Vorovich, Nonlinear Theory of Shallow Shells, Springer, 1999, 388 pp. | MR | Zbl
[9] Ciarlet P.G., Mathematical Elasticity, v. III, Theory of Shells, North-Holland, Amsterdam, 2000, 599 pp. | MR | Zbl
[10] P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, SIAM, 2002, xxiii+529 pp. | MR
[11] G. P. Astrakhantsev, “A method for the approximate solution of the Dirichlet problem for the biharmonic equation”, USSR Comput. Math. Math. Phys., 17:4 (1977), 157–175 | DOI | MR | Zbl
[12] G. M. Kobel'kov, “Iterative processes for some classes of difference schemes”, Chislennye Metody Mekh. Sploshnoi Sredy, 12:6 (1981), 38–48 (in Russian) | MR | Zbl
[13] G. M. Kobel'kov, “Reduction of a boundary value problem for a biharmonic equation to a problem of Stokes type”, Dokl. Akad. Nauk SSSR, 283:3 (1985), 539–541 (In Russian) | MR | Zbl
[14] G. M. Kobel'kov, “Reduction of a boundary value problem for the biharmonic equation to a problem with an operator of Stokes type”, Sov. Math. (Izv. Vyssh. Uchebn. Zaved.), 29:10 (1985), 39–59 | Zbl
[15] M. M. Karchevsky, “Some methods of solving the first boundary value problem for the biharmonic difference equation”, USSR Comput. Math. Math. Phys., 23:5 (1983), 41–47 | DOI | MR
[16] V. I. Ryazhskikh, M. I. Slyusarev, M. I. Popov, “Numerical integration of a biharmonic equation in square field”, Vestn. S. Peterb. Univ. Ser. 10, 2013, no. 1, 52–62 (In Russian)
[17] G. P. Astrakhantsev, “On a mixed finite-element method in problems of shell theory”, USSR. Comput. Math. Math. Phys., 29:5 (1989), 167–176 | DOI | MR | Zbl
[18] Yu. A. Dubinskii, “Quasilinear elliptic and parabolic equations of arbitrary order”, Russ. Math. Surv., 23:1 (1968), 45–91 | DOI | MR
[19] M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley Sons, 1974, 356 pp. | MR | MR
[20] C. Bernardi, “Optimal finite-element interpolation on curved domains”, SIAM J. Numer. Anal., 26:5 (1989), 1212–1240 | DOI | MR | Zbl
[21] M. Zlamal, SIAM J. Numer. Anal., 10:1 (1973), 229–240 | DOI | MR | Zbl
[22] V. G. Korneev, Schemes of High Orders of Accuracy for the Finite Element Method, Leningr. Gos. Univ., L., 1977, 206 pp. (In Russian)
[23] R. Z. Dautov, M. M. Karchevsky, Introduction to the Theory of Finite Element Method, Kazan. Univ., Kazan, 2011, 238 pp. (In Russian)
[24] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco–London–Amsterdam, 1964, 323 pp. | MR | Zbl
[25] M. M. Karchevsky, M. F. Pavlova, Equations of Mathematical Physics, Additional Chapters, Lan', St. Petersburg, 2016, 276 pp. (In Russian)
[26] A. A. Samarsky, E. S. Nikolaev, Numerical Methods for Grid Equations, Iterative methods, Birkhauser, Basel, 1989, 502 pp. | MR
[27] M. M. Karchevsky, “A mixed finite element method for nonlinear problems in the theory of plates”, Russ. Math., 36:7 (1992), 10–17 | MR
[28] J. P. Aubin, “Behavior of the error of the approximate solutions of boundary value problems for the linear elliptic operators by the Galerkin's and finite difference methods”, Ann. Scuola Norm. Super. Pisa, 21 (1967), 599–637 | MR | Zbl
[29] G. Strang, G. J. Fix, An Analysis of the Finite Element Method, Wellesley-Cambridge Press, 2008, 400 pp. | MR
[30] C. Bahriawati, C. Carstensen, “Three Matlab implementations of the lowest-order Raviart–Thomas Mfem with a posteriori error control”, Comput. Methods Appl. Math., 5:4 (2005), 333–361 | DOI | MR | Zbl
[31] R. Z. Dautov, Matlab Implementation of the Finite Element Method, Izd. Kazan. Univ., Kazan, 2014, 108 pp. (In Russian)
[32] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997, 419 pp. | MR | Zbl