Efficient removal of divisors in the $k$-ary algorithm
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 393-404
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
The $k$-ary algorithm is one of the most efficient methods for finding the greatest common divisor (GCD). To find GCD of $u$ and $v$, we performed the $k$-ary reduction $t = |a u + b v|/k$, where $ 0 a,$ $ |b| \leq \lceil \sqrt{k} \rceil{:}$ $ a u + b v \equiv{} 0 \pmod k$. The reduction step is used when $u$ and $v$ have almost the same size. Otherwise, we appled the dmod operation $|u-cv|/2^L$, where $c = u v^{-1} \bmod 2^L$, $L = L(u) - L(v)$, $L(a)$ is a function returning the binary length of $a$. We considered that $k$-ary algorithm works with multi-precision integers and $k=2^{2W}$, where $W$ is the word size. We accelerated this method by minimizing the number of divisors removal operations. We combined this procedure with a division operation by $2^{i W}$ and described its fast implementation. We proposed a new way to compute coefficients that allows to get rid of divisors removal before the reduction step and to produce that operation before dmod operation in $1/3$ of the cases. The proposed method accelerates the main loop of the $k$-ary algorithm by $3$–$16\%$. The results obtained are important in many algorithms in cryptography.
Keywords:
greatest common divisor, $k$-ary algorithm, factors removal, multi-precision integers.
@article{UZKU_2019_161_3_a5,
author = {R. R. Enikeev},
title = {Efficient removal of divisors in the $k$-ary algorithm},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {393--404},
publisher = {mathdoc},
volume = {161},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a5/}
}
TY - JOUR AU - R. R. Enikeev TI - Efficient removal of divisors in the $k$-ary algorithm JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 393 EP - 404 VL - 161 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a5/ LA - ru ID - UZKU_2019_161_3_a5 ER -
R. R. Enikeev. Efficient removal of divisors in the $k$-ary algorithm. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a5/