@article{UZKU_2019_161_3_a5,
author = {R. R. Enikeev},
title = {Efficient removal of divisors in the $k$-ary algorithm},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {393--404},
year = {2019},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a5/}
}
TY - JOUR AU - R. R. Enikeev TI - Efficient removal of divisors in the $k$-ary algorithm JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 393 EP - 404 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a5/ LA - ru ID - UZKU_2019_161_3_a5 ER -
R. R. Enikeev. Efficient removal of divisors in the $k$-ary algorithm. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a5/
[1] B. Gladman, W. Hart, J. Moxham et al., MPIR: Multiple Precision Integers and Rationals, Version 2.7.0, , 2015 http://mpir.org
[2] T. Jebelean, “A double-digit Lehmer–Euclid algorithm for finding the GCD of long integers”, J. Symbol. Computation, 19:1–3 (1995), 145–157 | DOI | MR | Zbl
[3] J. Stein, “Computational problems associated with Racah algebra”, J. Comput. Phys., 1:3 (1967), 397–405 | DOI | Zbl
[4] D. E. Knuth, The Art of Computer Programming, v. 2, Seminumerical algorithms, Vil'yams, M., 2001, 832 pp. (In Russian)
[5] J. Sorenson, “Two fast GCD algorithms”, J. Algorithms, 16:1 (1994), 110–144 | DOI | MR | Zbl
[6] K. Weber, “The accelerated integer GCD algorithm”, ACM Transact. Math. Software, 21:1 (1995), 111–122 | DOI | MR | Zbl
[7] T. Jebelean, “A generalization of the binary GCD algorithm”, Proc. 1993 Int. Symp. on Symbolic and Algebraic Computation, ACM, N. Y., 1993, 111–116 | DOI | Zbl
[8] V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge Univ. Press, Cambridge, 2008, 598 pp. | MR
[9] T. Jebelean, “An algorithm for exact division”, J. Symbol. Comput., 15:2 (1993), 169–180 | DOI | MR | Zbl
[10] Sh. T. Ishmukhametov, B. G. Mubarakov, “Kamal Al-Anni Maad Calculation of Bezout's coefficients for the $k$-ary algorithm of finding GCD”, Russ. Math., 61:11 (2017), 26–33 | DOI | MR | Zbl
[11] R. R. Enikeev, “Computing Bezout coefficients using extended generalized binary algorithm”, Information Technology and Mathematical Modeling (ITMM-2017), Proc. XVI Int. Conf. Dedicated to A.F. Terpugov, Izd. Nauchn.-Tekh. Lit., Tomsk, 2017, 284–291 (In Russian)