Homogeneous difference schemes for the coupled problems of hydrodynamics and elasticity
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 377-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Finite-difference approximations of elastic forces on the staggered moving grid were constructed. For the displacement vectors at the irregular grids in which topological and geometrical structures are subjected to minimal reasonable restrictions, with regard to the finite-difference schemes of the elasticity theory problems, approximations of the vector analysis operators in plane and cylindrical geometries were constructed. Taking into account the energy balance of the medium, the families of integral consistent approximations of the vector analysis operators, which are sufficient for the discrete modeling of these processes considering the space curvature caused by the cylindrical geometry of the system, were built. The schemes, both using a stress tensor in the full form and dividing it into volumetric and deviator components, were studied. This separation is used to construct homogeneous equations that are applicable for solid body and vaporized phase. The linear theory of elasticity was used. The resulting expressions for the elastic forces were presented in the explicit form for two-dimensional flat and axisymmetric geometries for a mesh consisting of triangular and quadrangular cells. Generalization of the method for other cases (non-linear strain tensor, non-Hookean relation between strain and stress, full 3D geometry, etc.) can be performed by analogy, but this was not a subject of the current paper. Using the model problem, comparison between different temporal discretizations for the obtained ordinary differential equations system was carried out. In particular, we considered fully implicit approximation, conservative implicit approximation (Crank–Nicolson method), and explicit approximation, which is similar to the “leap-frog” method. The analysis of full energy imbalance and calculation costs showed that the latter is more advantageous. The analysis of the effectiveness of various temporal approximations was performed via numerical experiments.
Keywords: finite-difference scheme, strain tensor, support-operator method, Lagrange staggered grid.
@article{UZKU_2019_161_3_a4,
     author = {I. P. Tsigvintsev and A. Yu. Krukovskiy and Yu. A. Poveshchenko and V. A. Gasilov and D. S. Boykov and S. B. Popov},
     title = {Homogeneous difference schemes for the coupled problems of hydrodynamics and elasticity},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {377--392},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a4/}
}
TY  - JOUR
AU  - I. P. Tsigvintsev
AU  - A. Yu. Krukovskiy
AU  - Yu. A. Poveshchenko
AU  - V. A. Gasilov
AU  - D. S. Boykov
AU  - S. B. Popov
TI  - Homogeneous difference schemes for the coupled problems of hydrodynamics and elasticity
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 377
EP  - 392
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a4/
LA  - ru
ID  - UZKU_2019_161_3_a4
ER  - 
%0 Journal Article
%A I. P. Tsigvintsev
%A A. Yu. Krukovskiy
%A Yu. A. Poveshchenko
%A V. A. Gasilov
%A D. S. Boykov
%A S. B. Popov
%T Homogeneous difference schemes for the coupled problems of hydrodynamics and elasticity
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 377-392
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a4/
%G ru
%F UZKU_2019_161_3_a4
I. P. Tsigvintsev; A. Yu. Krukovskiy; Yu. A. Poveshchenko; V. A. Gasilov; D. S. Boykov; S. B. Popov. Homogeneous difference schemes for the coupled problems of hydrodynamics and elasticity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 377-392. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a4/

[1] A. A. Samarskii, V. F. Tishkin, A. P. Favorskii, M. Yu. Shashkov, “Operator difference schemes”, Differ. Uravn., 17:7 (1981), 1317–1327 (In Russian) | MR

[2] A. A. Samarskii, V. F. Tishkin, A. P. Favorskii, M. Yu. Shashkov, “Representation of difference schemes of mathematical physics in operator form”, Dokl. Akad. Nauk SSSR, 258:5 (1981), 1092–1096 (In Russian) | MR

[3] T. K. Korshiya, V. F. Tishkin, A. A. Samarskii, A. P. Favorskii, M. Yu. Shashkov, Variational Operator Difference Schemes for Equations of Mathematical Physics, Izd. Tbilis. Univ., Tbilisi, 1983, 143 pp. (In Russian)

[4] A. A. Denisov, A. V. Koldoba, Yu. A. Poveshchenko, “The convergence to generalized solutions of difference schemes of the reference-operator method for Poisson's equation”, USSR Comput. Math. Math. Phys., 29:2 (1989), 32–38 | DOI | MR | Zbl

[5] A. A. Denisov, A. V. Koldoba, Yu. A. Poveshchenko, “Convergence of difference schemes of the reference-operator method to generalized solutions of the axisymmetric Poisson equation”, USSR Comput. Math. Math. Phys., 30:5 (1990), 140–147 | DOI | MR | Zbl

[6] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveshchenko, V. F. Tishkin, A. P. Favorskii, Difference Schemes on Irregular Grids, Kriterii, Minsk, 1996, 273 pp. (In Russian)

[7] A. V. Koldoba, Yu. A. Poveshchenko, I. V. Gasilova, E. Yu. Dorofeeva, “Numerical schemes of the support operators method for elasticity theory equations”, Mat. Model., 24:12 (2012), 86–96 (In Russian) | MR | Zbl

[8] A. A. Samarskii, Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems, Nauka, M., 1992, 424 pp. (In Russian)

[9] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma, Fizmatlit, M., 2000, 400 pp. (In Russian)

[10] L. D. Landau, E. M. Lifshits, Theory of Elasticity. Course of Theoretical Physics, v. 7, Pergamon Press, Oxford, 1970, 165 pp. | MR | MR

[11] V. M. Goloviznin, A. A. Samarskii, A. P. Favorskii, “A variational approach to the construction of finite-difference mathematical models in hydrodynamics”, Dokl. Akad. Nauk SSSR, 235:6 (1977), 1285–1288 (In Russian) | MR | Zbl

[12] V. A. Gasilov, A. Yu. Krukovskii, V. G. Novikov, I. V. Romanov, I. P. Tsygvintsev, “Numerical simulation of current flow in a vacuum diode with laser ignition”, Keldysh Inst. Prepr., 2013, 078, 20 pp. (In Russian)

[13] V. A. Gasilov, A. Yu. Krukovskii, Yu. A. Poveshchenko, I. P. Tsygvintsev, “Homogeneous difference schemes for solving related problems of hydrodynamics and elasticity”, Keldysh Inst. Prepr., 2018, 013, 17 pp. (In Russian)

[14] Yu. A. Poveshchenko, V. A. Gasilov, M. E. Ladonkina, V. O. Podryga, I. S. Nasekin, “Difference schemes of the support operator method for equations of the theory of elasticity in cylindrical geometry”, Keldysh Inst. Prepr., 2018, 142, 22 pp. (In Russian)

[15] A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, v. 2, Iterative methods, Birkhauser Verlag, Basel–Boston–Berlin, 1989, 502 pp. | MR | Zbl