About the use of the Stokes number for mathematical modeling of two-phase jet flows
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 341-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The appropriateness of using the Stokes number as a single similitude parameter for representation of the results of research on two-phase jet flows in a criteria form was considered. Numerical modeling with the help of the developed mathematical model of a two-phase turbulent jet was applied. After putting the equations of this model in the dimensionless form, the similitude parameters needed for two-phase turbulent jet flow modeling were obtained. One of the criteria for dynamic similarity is the Stokes number, which can be presented as a product of the Reynolds number, the relative diameter of particles, and the relative density of phases. It was shown that the value of the Stokes number is uniquely related to changes in the parameters of the two-phase jet only when its value is smaller than 0.14–0.15. The two-phase jet flows can be geometrically and kinematically similar at higher values of the Stokes number if the equality of the following three criteria of similarity are maintained: Reynolds numbers, relative diameter of particles, and relative density of phases. The obtained results allow avoiding gross errors during generalization of experimental and analytical data on two-phase turbulent jet flows.
Keywords: two-phase jet, gas, criteria of similarity, calculation results.
Mots-clés : particle
@article{UZKU_2019_161_3_a1,
     author = {Yu. V. Zuev},
     title = {About the use of the {Stokes} number for mathematical modeling of two-phase jet flows},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {341--354},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Zuev
TI  - About the use of the Stokes number for mathematical modeling of two-phase jet flows
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 341
EP  - 354
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a1/
LA  - ru
ID  - UZKU_2019_161_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Zuev
%T About the use of the Stokes number for mathematical modeling of two-phase jet flows
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 341-354
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a1/
%G ru
%F UZKU_2019_161_3_a1
Yu. V. Zuev. About the use of the Stokes number for mathematical modeling of two-phase jet flows. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 341-354. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a1/

[1] Elghobashi S., “Particle-laden turbulent flows: direct simulation and closure models”, Appl. Sci. Res, 48:3–4 (1991), 301–314 | DOI | Zbl

[2] L. I. Zaichik, V. A. Pershukov, “Problems of modeling gas-particle turbulent flows with combustion and phase transitions”, Review. Fluid Dyn., 31:5 (1996), 635–646 | DOI | MR | Zbl

[3] A. Yu. Varaksin, Turbulent Flows of Gas with Firm Particles, Fizmatlit, M., 2003, 192 pp. (In Russian)

[4] A. Yu. Varaksin, Collisions in Gas Flows with Solids, Fizmatlit, M., 2008, 312 pp. (In Russian)

[5] F. Picano, G. Sardina, P. Gualtieri, Casciola C. M., “Anomalous memory effects on transport of inertial particles in turbulent jets”, Phys. Fluids, 22:5 (2010), 031005, 4 pp. | DOI

[6] F. Picano, G. Sardina, P. Gualtieri, C. M. Casciola, “Particle-laden jets: Particle distribution and back-reaction on the flow”, J. Phys.: Conf. Ser., 318, 5 (2011), 052018, 10 pp. | DOI

[7] V. I. Terekhov, M. A. Pakhomov, “Effect of particles on the flow structure and dispersion of solid impurities in a two-phase axisymmetric jet”, Tech. Phys., 56:10 (2011), 1406–1414 | DOI

[8] R. I. Nigmatulin, The Dynamics of Multiphase Media, v. 1, Nauka, M., 1987, 464 pp. (In Russian)

[9] J. O. Hinze, Turbulence. An Introduction to Its Mechanism and Theory, McGraw-Hill, New York, 1959, 586 pp. | MR

[10] L. E. Sternin, A. A. Shraiber, Multiphase Flows of Gas with Particles, Mashinostroeniye, M., 1994, 320 pp. (In Russian)

[11] Yu. V. Zuev, I. A. Lepeshinsky, “Features of spread of gas and two-phase double-circuit coaxial jets”, Mat. Model., 28:12 (2016), 95–106 (In Russian) | MR

[12] G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, A. N. Sekundov, I. P. Smirnova, Theory of Turbulent Jets, Nauka, M., 1984, 716 pp. (In Russian) | MR

[13] S. Yu. Krasheninnikov, “Calculation of axisymmetric twisted and nontwisted turbulent jets”, Fluid Dyn., 7:3 (1972), 426–433 | DOI | MR

[14] Yu. V. Zuev, I. A. Lepeshinskii, VA. Reshetnikov, E. A. Istomin, “The choice of criteria and determination of their values for assessment of phase interaction behavior in two-phase turbulent jets”, Vestn. MGTU im. N.E. Baumana. Ser. Mashinostr., 2012, no. 1, 42–54 (In Russian)

[15] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker Inc, New York–Basel, 2001, 786 pp. | MR | MR | Zbl

[16] A. A. Shraiber, L. B. Gavin, V. A. Naumov, V. P. Yatsenko, Turbulent Flows of a Gas Mixture, Nauk. Dumka, Kiev, 1987, 240 pp. (In Russian)

[17] A. I. Kartushinsky, F. A. Frishman, “About migration transfer in a two-phase jet”, Jet Flows of Liquids and Gases, Proc. All-Union Sci. Conf., v. 3, Novopolotsk. Politekh. Inst., Novopolotsk, 1982, 22–28 (In Russian)