@article{UZKU_2018_160_4_a6,
author = {O. V. Soloveva and S. A. Solovev and O. S. Popkova},
title = {Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of pressure drop calculation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {681--694},
year = {2018},
volume = {160},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a6/}
}
TY - JOUR AU - O. V. Soloveva AU - S. A. Solovev AU - O. S. Popkova TI - Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of pressure drop calculation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 681 EP - 694 VL - 160 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a6/ LA - ru ID - UZKU_2018_160_4_a6 ER -
%0 Journal Article %A O. V. Soloveva %A S. A. Solovev %A O. S. Popkova %T Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of pressure drop calculation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 681-694 %V 160 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a6/ %G ru %F UZKU_2018_160_4_a6
O. V. Soloveva; S. A. Solovev; O. S. Popkova. Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of pressure drop calculation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 681-694. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a6/
[1] Garrido G. I., Patcas F. C., Lang S., Kraushaar-Czarnetzki B., “Mass transfer and pressure drop in ceramic foams: A description for different pore sizes and porosities”, Chem. Eng. Sci., 63:21 (2008), 5202–5217 | DOI
[2] Della Torre A., Montenegro G., Tabor G. R., Wears M. L., “CFD characterization of flow regimes inside open cell foam substrates”, Int. J. Heat Fluid Flow, 50 (2014), 72–82 | DOI
[3] Storm J., Abendroth M., Emmel M., Liedke T., Ballaschk U., Voigt C., Kuna M., “Geometrical modelling of foam structures using implicit functions”, Int. J. Solids Struct., 50:3–4 (2013), 548–555 | DOI
[4] Della Torre A., Lucci F., Montenegro G., Onorati A., Eggenschwiler P. D., Tronconi E., Groppi G., “CFD modeling of catalytic reactions in open-cell foam substrates”, Comput. Chem. Eng., 92 (2016), 55–63 | DOI
[5] Mitrichev I. I., Koltsova E. M., Zhena A. V., “Computer simulation of gasodynamic conditions in channels of open cell foam”, Fundam. Res., 2012, no. 11-2, 440–446
[6] Hellmann A., Pitz M., Schmidt K., Haller F., Ripperger S., “Characterization of an open-pored nickel foam with respect to aerosol filtration efficiency by means of measurement and simulation”, Aerosol Sci. Technol., 49:1 (2015), 16–23 | DOI
[7] Wake D., Brown R. C., “Filtration of monodisperse aerosols and polydisperse dusts by porous foam filters”, J. Aersosol Sci., 22:6 (1991), 693–706 | DOI
[8] Horneber T., Rauh C., Delgado A., “Numerical simulations of fluid dynamics in carrier structures for catalysis: characterization and need for optimization”, Chem. Eng. Sci., 117 (2014), 229–238 | DOI
[9] Bai M., Chung J. N., “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams”, Int. J. Therm. Sci., 50:6 (2011), 869–880 | DOI
[10] Bianchi E., Groppi G., Schwieger W., Tronconi E., Freund H., “Numerical simulation of heat transfer in the near-wall region of tubular reactors packed with metal open-cell foams”, Chem. Eng. J., 264 (2015), 268–279 | DOI
[11] Lacroix M., Nguyen P., Schweich D., Huu C. Ph., Savin-Poncet S., Edouard D., “Pressure drop measurements and modeling on SiC foams”, Chem. Eng. Sci., 62:12 (2007), 3259–3267 | DOI
[12] de Carvalho T. P., Morvan H. P., Hargreaves D. M., Oun H., Kennedy A., “Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams”, Transp. Porous Media, 117:2 (2017), 311–336 | DOI
[13] Zafari M., Panjepour M., Emami M. D., Meratian M., “Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams”, Appl. Therm. Eng., 80 (2015), 347–354 | DOI
[14] Hu X., Wan H., Patnaik S. S., “Numerical modeling of heat transfer in open-cell micro-foam with phase change material”, Int. J. Heat Mass Transfer., 88 (2015), 617–626 | DOI
[15] Belkadi A., Edouard D., “DirectCell technique: A very fast and simple method for characteristic lengths estimation in polyurethane open cell foam”, Chem. Eng. Proc.: Process Intensif., 86 (2014), 64–68 | DOI
[16] Kumar P., Topin F., “Predicting pressure drop in open-cell foams by adopting Forchheimer number”, Int. J. Multiphase Flow, 94 (2017), 123–136 | DOI | MR
[17] Saw L. H., Ye Y., Yew M. C., Chong W. T., Yew M. K., Ng T. C., “Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system”, Appl. Energy, 204 (2017), 1489–1499 | DOI
[18] Arbak A., Dukhan N., Bağcı O., Ozdemir M., “Influence of pore density on thermal development in open-cell metal foam”, Exp. Therm. Fluid Sci., 86 (2017), 180–188 | DOI
[19] Yang X. H., Song S. Y., Zhang L. Y., Lu T. J., “Pore-scaled analytical modelling of permeability and inertial coefficient for pressure drop prediction of open-cell metallic foams”, ASME 2016 5th Int. Conf. on Micro/Nanoscale Heat and Mass Transfer, Am. Soc. Mech. Eng., 2016, V002T15A001-1–V002T15A001-6 | DOI
[20] Yang X., Li Y., Zhang L., Jin L., Hu W., Lu T. J., “Thermal and fluid transport in micro-open-cell metal foams: Effect of node size”, J. Heat Transfer, 140:1 (2018), 014502, 1–6 | DOI