Mots-clés : exact solution
@article{UZKU_2018_160_3_a3,
author = {M. M. Alimov},
title = {A modified formulation of the problem of the steady finger in a {Hele{\textendash}Shaw} cell},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {462--476},
year = {2018},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a3/}
}
TY - JOUR AU - M. M. Alimov TI - A modified formulation of the problem of the steady finger in a Hele–Shaw cell JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 462 EP - 476 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a3/ LA - ru ID - UZKU_2018_160_3_a3 ER -
%0 Journal Article %A M. M. Alimov %T A modified formulation of the problem of the steady finger in a Hele–Shaw cell %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 462-476 %V 160 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a3/ %G ru %F UZKU_2018_160_3_a3
M. M. Alimov. A modified formulation of the problem of the steady finger in a Hele–Shaw cell. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 462-476. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a3/
[1] Saffman P. G., Taylor G. I., “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid”, Proc. R. Soc. London, Ser. A, 245:1242 (1958), 312–329 | DOI | MR | Zbl
[2] McLean J. W., Saffman P. G., “The effect of surface tension on the shape of fingers in a Hele-Shaw cell”, J. Fluid Mech., 102 (1981), 455–469 | DOI | Zbl
[3] Ockendon J. R., Howison S. D., “Kochina and Hele-Shaw in modern mathematics, natural science and industry”, J. Appl. Math. Mech., 66:3 (2002), 505–512 | DOI | MR | Zbl
[4] Chapman S. J., “On the role of Stokes line in the selection of Saffman–Taylor finger with small surface tension”, Eur. J. Appl. Math., 10 (1999), 513–534 | DOI | MR | Zbl
[5] Shraiman B., “Velocity selection and the Saffman–Taylor problem”, Phys. Rev. Lett., 56 (1986), 2028–2031 | DOI
[6] Tanweer S., “Analytic theory for the selection of a symmetric Saffman–Taylor finger in a Hele-Shaw cell”, Phys. Fluids, 30:6 (1987), 1589–1605 | DOI | MR
[7] Combescot R., Hakim V., Dombre T., Pomeau Y., Pumir A., “Analytic theory of the Saffman–Taylor fingers”, Phys. Rev. A, 37:4 (1988), 1270–1283 | DOI | MR
[8] Tanveer S., Viscous displacement in a Hele-Shaw cell, eds. H. Segur et al., Plenum Press, N. Y., 1991, 131–153 | MR
[9] Tanweer S., “The effect of surface tension on the shape of a Hele-Shaw cell bubble”, Phys. Fluids, 29:11 (1986), 3537–3548 | DOI | MR
[10] Alimov M. M., “Numerical analysis of solution of the Hele-Shaw problem for steadily moving bubble”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 1, 2012, 99–113 (In Russian)
[11] Lamb H., Hydrodynamics, Gostekhizdat, M.–L., 1947, 928 pp. (In Russian)
[12] Vasconcelos G. L., “Exact solutions for N steady fingers in a Hele-Shaw cell”, Phys. Rev. E, 58:5 (1998), 6858–6860 | DOI | MR
[13] Gurevich M. I., Theory of Jets in Ideal Fluids, Nauka, M., 1979, 536 pp. (In Russian)
[14] Alimov M. M., “On steady solutions of Hele-Shaw problem”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 147, no. 3, 2005, 33–48 (In Russian) | Zbl
[15] Lavrent'ev M. A., Shabat B. V, Methods of Complex Variable Theory, Nauka, M., 1973, 736 pp. (In Russian)
[16] Alimov M. M., “The principle of minimum energy dissipation rate in steady Hele–Shaw flows”, Fluid Dyn., 48:4 (2013), 512–522 | DOI | MR | Zbl