Keywords: stochastic matrix, “forward-backward” algorithm.
@article{UZKU_2018_160_3_a11,
author = {A. R. Nurutdinova},
title = {A modified algorithm of {\textquotedblleft}forward-backward{\textquotedblright} solving the identification of automata {Markov} models},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {578--589},
year = {2018},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a11/}
}
TY - JOUR AU - A. R. Nurutdinova TI - A modified algorithm of “forward-backward” solving the identification of automata Markov models JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 578 EP - 589 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a11/ LA - ru ID - UZKU_2018_160_3_a11 ER -
%0 Journal Article %A A. R. Nurutdinova %T A modified algorithm of “forward-backward” solving the identification of automata Markov models %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 578-589 %V 160 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a11/ %G ru %F UZKU_2018_160_3_a11
A. R. Nurutdinova. A modified algorithm of “forward-backward” solving the identification of automata Markov models. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 578-589. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a11/
[1] Levin B. R., Probabilistic Models and Methods in Communication and Management Systems, Radio Svyaz, M., 1985, 312 pp. (In Russian)
[2] Friedman W. F., Callimahos D., Military cryptanalysis, Pt. I, v. 2, Aegean Park Press, Laguna Hills, CA, 1985, 242 pp.
[3] Rabiner L. R., “A tutorial on hidden Markov models and selected applications in speech recognition”, Proc. IEEE, 77:2 (1989), 257–286 | DOI
[4] Teptin G. M., Ivanov K. V., “Markov models of defense means for automated special-purpose systems”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 150, no. 4, 2008, 41–53 (In Russian)
[5] Raskin L. G., Analysis of Stochastic Systems and Elements of the Optimal Control Theory, Sov. Radio, M., 1975, 344 pp. (In Russian)
[6] Pospelov D. A., Probabilistic Automata, Energy, M., 1970, 88 pp. (In Russian)
[7] Bukharaev R. G., “On the estimation of the minimal number of input values of an automaton that generates a homogeneous Markov chain”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 129, no. 4, 1967, 3–11 (In Russian)
[8] Bukharaev R. G., “The representability of events in probabilistic automata”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 127, no. 3, 1967, 7–20 (In Russian) | Zbl
[9] Alpin Yu. A., Alpina V. S., “On the normal form of a stochastic matrix”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 2, 2012, 60–72 (In Russian) | MR
[10] Bukharaev R. G., Probabilistic Automata, Izd. Kazan. Univ., Kazan, 1970, 188 pp. (In Russian)
[11] Zakharov V. M., Nurmeev N. N., Salimov F. I., Shalagin S. V., “Analysis of stochastic matrices using multivariate classification methods”, Discrete Mathematics and Its Applications, Proc. 7th Int. Seminar, v. II, M., 2001 (In Russian)
[12] Zakharov V. M., Nurmeev N. N., Salimov F. I., Shalagin S. V., “Classification of ergodic stochastic matrices using methods of cluster and discriminant analysis”, Issled. Inf., 2, 2000, 91–106 (In Russian)
[13] Lorenc A. A., Reliability and Speed of Probabilistic Automata, Zinatne, Riga, 1976, 112 pp. (In Russian)
[14] Romanovskii V. I., Discrete Markov Chains, Gostekhizdat, M., 1949, 436 pp. (In Russian)
[15] Fedotov N. G., Methods of Stochastic Geometry in Pattern Recognition, Radio Svyaz, M., 1990, 144 pp. (In Russian)
[16] Kemeny J. G., Snell J. L., Finite Markov Chains, Springer, N. Y., 1970, 272 pp. | MR
[17] Li T., Jadg D., Zelner A, Evaluation of parameters of Markov property models by aggregated temporary rows, Statistics, M., 1977, 221 pp.
[18] Nurutdinova A. R., Shalagin S. V., “The method of identification of automaton Markov models on the basis of sequences generated by them”, Vestn. KGTU im. A.N. Tupoleva, 2010, no. 1, 94–99 (In Russian)
[19] Nurutdinova A. R., Shalagin S. V., “Multiparameter classification of automation Markov models based on their generated sequence of states”, Prikl. Diskretn. Mat., 2010, no. 4, 41–54 (In Russian)
[20] Khinchin A. Ya., “Concept of entropy in the theory of probability”, Usp. Mat. Nauk, 1953, no. 3, 3–20 (In Russian)
[21] Nurutdinova A. R., “A modification of the “forward-backward” algorithm of identification of automata Markov models”, Sist. Upr. Inf. Tekhnol., 2018, no. 2, 36–41 (In Russian)
[22] Shalagin S. V., Nurutdinova A. R., “Identification algorithms of simple homogeneous Markov chains of cyclic class and their complexity analysis”, Int. J. Pharm. Technol., 8:3 (2016), 14926–14935
[23] Shalagin S. V., Nurutdinova A. R., “Identification of a sequence of measurements of economic parameters based on a hidden Markov model”, Problems of Analysis and Modeling of Regional Social and Economic Processes, Proc. VII Int. Sci.-Pract. Conf., Izd. Kazan. Univ., Kazan, 2017, 159–162 (In Russian)