Feynman calculus for random operator-valued functions and their applications
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 373-383
Cet article a éte moissonné depuis la source Math-Net.Ru
The Feynman–Chernoff iteration of a random semigroup of bounded linear operators in the Hilbert space has been considered. The convergence of mean values of the Feynman–Chernoff iteration of a random semigroup has been studied. The estimates of the deviation of compositions of the independent identically distributed random semigroup from its mean value have been obtained as the large numbers law for the sequence of compositions of the independent random semigroup has been investigated. The relationship between the semigroup properties of the mean values of the random operator-valued function and the property of independence of the increments of the random operator-valued function has been analyzed. The property of asymptotic independence of the increments of the Feynman–Chernoff iteration of the random semigroup has been discussed. The independization of the random operator-valued function has been defined as the map of this random operator function into the sequence of random operator-valued functions, which has asymptotically independent increments. The examples of independization (which is similar to the Feynman–Chernoff iteration) of the random operator-valued function have been given.
Keywords:
random operator, random semigroup, Feynman–Chernoff iteration, large numbers law.
@article{UZKU_2018_160_2_a18,
author = {V. Zh. Sakbaev and O. G. Smolyanov},
title = {Feynman calculus for random operator-valued functions and their applications},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {373--383},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a18/}
}
TY - JOUR AU - V. Zh. Sakbaev AU - O. G. Smolyanov TI - Feynman calculus for random operator-valued functions and their applications JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 373 EP - 383 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a18/ LA - en ID - UZKU_2018_160_2_a18 ER -
%0 Journal Article %A V. Zh. Sakbaev %A O. G. Smolyanov %T Feynman calculus for random operator-valued functions and their applications %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 373-383 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a18/ %G en %F UZKU_2018_160_2_a18
V. Zh. Sakbaev; O. G. Smolyanov. Feynman calculus for random operator-valued functions and their applications. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 373-383. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a18/
[1] Orlov Y. N., Sakbaev V. Z., Smolyanov O. G., “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | MR | Zbl
[2] Bogachev V. I., Smolyanov O. G., Topological Vector Spaces and Their Applications, Springer, 2017, x+456 pp. | DOI | MR | Zbl
[3] Sakbaev V. Zh., “On the law of large numbers for compositions of independent random semigroups”, Russ. Math., 60:10 (2016), 72–76 (in Russian) | DOI | MR | Zbl
[4] Bogachev V. I., Measure Theory, v. 1, Springer, Berlin–Heidelberg, 2007, xviii+500 pp. | MR | Zbl