Mots-clés : perceptron
@article{UZKU_2018_160_2_a16,
author = {P. A. Novikov and R. R. Valiev},
title = {Hidden {Markov} models and neural networks in formation of investment portfolio},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {357--363},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/}
}
TY - JOUR AU - P. A. Novikov AU - R. R. Valiev TI - Hidden Markov models and neural networks in formation of investment portfolio JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 357 EP - 363 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/ LA - en ID - UZKU_2018_160_2_a16 ER -
%0 Journal Article %A P. A. Novikov %A R. R. Valiev %T Hidden Markov models and neural networks in formation of investment portfolio %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 357-363 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/ %G en %F UZKU_2018_160_2_a16
P. A. Novikov; R. R. Valiev. Hidden Markov models and neural networks in formation of investment portfolio. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 357-363. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/
[1] Shklyaev A. O., “Predicting financial time series by hidden Markov models”, Nauchn. Zap. Molodykh Issled., 1 (2015), 17–21 (In Russian)
[2] Waqasa Y., Hashmia S. H., Nazir M. I., “Macroeconomic factors and foreign portfolio investment volatility: A case of South Asian countries”, Future Bus. J., 1:1 (2015), 65–74 | DOI
[3] Leng C., Wang S., “Hidden Markov Model for predicting the turning points of GDP fluctuation”, Proc. Int. Conf. on Future Computer and Communication Engineering, Atlantis Press, Tianjin, 2014 | DOI
[4] Anghelache C., Anghelache G. V., “Macroeconomic models used in the structural analysis of the gross domestic product”, Rom. Stat. Rev., 61:6 (2013), 15–21
[5] Geras'kin M. I., Porubova P. V., “Trend analysis of the dynamics of macroeconomic indicators of the Russian Federation in 1959–2014”, Vestn. Samar. Gos. Ekon. Univ., 4:150 (2017), 5–18 (In Russian)
[6] Dempster A. P., Laird N. M., Rubin D. B., “Maximum likelihood from incomplete data via the em algorithm”, J. R. Stat. Soc., Ser. B, 39:1 (1977), 1–38 | MR | Zbl
[7] Fuh Ch.-D., “SPRT and CUSUM in hidden Markov models”, Ann. Stat., 31:3 (2003), 942–977 | DOI | MR | Zbl
[8] Rumelhart D. E., Hinton G. E., Williams R. J., “Learning representations by back-propagating errors”, Nature, 323:6088 (1986), 533–536 | DOI | Zbl
[9] Ioan C. A., Ioan G., “Analysis of the evolution of the gross domestic product by means of cyclic regressions”, Acta Univ. Danubius, 4:4 (2011), 114–126
[10] Savin A. N., Timofeeva N. E., Geras'kin A. S., Shamshina E. A., Mavlyutova Yu. A., “Development of components of a program complex for stream filtration of audiocontent by means of hidden Markov models”, Izv. Sarat. Univ., Nov. Ser. Mat. Mekh. Inf., 15:3 (2015), 340–350 (In Russian) | DOI | Zbl
[11] Visser I., Speekenbrink M., “depmixs4: An r package for hidden Markov models”, J. Stat. Software, 36:7 (2010), 1–21 | DOI
[12] Viterbi A. J., “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm”, IEEE Trans. Inf. Theory, 13:2 (1967), 260–269 | DOI | Zbl
[13] Tobin J., “Liquidity preference as behavior towards risk”, Rev. Econ. Stud., 25:2 (1958), 65–86 | DOI
[14] Yahoo Finance. GSPC Interactive Stock Chart. S 500 Stock, https://finance.yahoo.com