Hidden Markov models and neural networks in formation of investment portfolio
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 357-363
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              Common mathematical models are used by investors for prediction of the future state of the financial market lose if the macroeconomic situation gets worse. In this regard, it is desired to build models that minimize losses in the formation of an investment portfolio under the conditions of economic fluctuations. Many models describing economic fluctuations consider annual changes, which allows to reduce the response time to the actual economical fluctuations. A model that predicts the future state of the economy based on more recent data enables the choice of the optimal strategy for investment portfolio formation. In this paper, we have proposed an economical model that allows to determine possible direction of changes in the economic situation on a quarterly basis, which is helpful in making timely decisions on the strategy for investment portfolio formation. Our model is based on hidden Markov models and the multilayer perceptron.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
hidden Markov models, investment portfolio, gross domestic product, Baum–Welch algorithm.
Mots-clés : perceptron
                    
                  
                
                
                Mots-clés : perceptron
@article{UZKU_2018_160_2_a16,
     author = {P. A. Novikov and R. R. Valiev},
     title = {Hidden {Markov} models and neural networks in formation of investment portfolio},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {357--363},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/}
}
                      
                      
                    TY - JOUR AU - P. A. Novikov AU - R. R. Valiev TI - Hidden Markov models and neural networks in formation of investment portfolio JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 357 EP - 363 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/ LA - en ID - UZKU_2018_160_2_a16 ER -
%0 Journal Article %A P. A. Novikov %A R. R. Valiev %T Hidden Markov models and neural networks in formation of investment portfolio %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 357-363 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/ %G en %F UZKU_2018_160_2_a16
P. A. Novikov; R. R. Valiev. Hidden Markov models and neural networks in formation of investment portfolio. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 357-363. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a16/
