Mots-clés : inflation
@article{UZKU_2018_160_2_a15,
author = {N. A. Moiseev},
title = {Improving the accuracy of macroeconomic time series forecast by incorporating functional dependencies between them},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {350--356},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a15/}
}
TY - JOUR AU - N. A. Moiseev TI - Improving the accuracy of macroeconomic time series forecast by incorporating functional dependencies between them JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 350 EP - 356 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a15/ LA - en ID - UZKU_2018_160_2_a15 ER -
%0 Journal Article %A N. A. Moiseev %T Improving the accuracy of macroeconomic time series forecast by incorporating functional dependencies between them %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 350-356 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a15/ %G en %F UZKU_2018_160_2_a15
N. A. Moiseev. Improving the accuracy of macroeconomic time series forecast by incorporating functional dependencies between them. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 350-356. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a15/
[1] Moiseev N. A., “Linear model averaging by minimizing mean-squared forecast error unbiased estimator”, Model Assisted Stat. Appl., 11:4 (2016), 325–338 | DOI
[2] Wang Y., Guo W., Brown M. B., “Spline smoothing for bivariate data with application to association between hormones”, Stat. Sin., 10:2 (2000), 377–397 | MR | Zbl
[3] Chen H., Wang Y., “A penalized spline approach to functional mixed effects model analysis”, Biometrics, 67:3 (2010), 861–870 | DOI | MR
[4] Welsh A. H., Yee T. W., “Local regression for vector responses”, J. Stat. Plann. Inference, 136:9 (2006), 3007–3031 | DOI | MR | Zbl
[5] Lestari B., Budiantara I. N., Sunaryo S., Mashuri M., “Spline estimator in multi-response nonparametric regression model with unequal correlation of errors”, J. Math. Stat., 6:3 (2010), 327–332 | DOI | Zbl
[6] Chamidah N., Budiantara I. N., Sunaryo S., Zain I., “Designing of child growth chart based on multi-response local polynomial modeling”, J. Math. Stat., 8:3 (2012), 342–247 | DOI
[7] Ruchstuhl A., Welsh A. H., Carroll R. J., “Nonparametric function estimation of the relationship between two repeatedly measured variables”, Stat. Sin., 10 (2000), 51–71 | MR
[8] Welsh A. H., Lin X., Carroll R. J., “Marginal longitudinal nonparametric regression: Locality and efficiency of spline and kernel methods”, J. Am. Stat. Assoc., 97:458 (2002), 482–493 | DOI | MR | Zbl
[9] Guo W., “Functional mixed effects models”, Biometrics, 58:1 (2002), 121–128 | DOI | MR | Zbl
[10] Antoniadis A., Sapatinas T., “Estimation and inference in functional mixed-effects models”, Comput. Stat. Data Anal., 51:10 (2007), 4793–4813 | DOI | MR | Zbl
[11] Krishtafovich V., Krishtafovich D., Belkin Y., Gubarev R., “Histological identification of animal protein ingredients”, Pak. J. Nutr., 15:1 (2016), 95–98 | DOI