Characterization of carbon nanolayer of optical fibers via near-field Raman spectroscopy
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 126-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Optical fibers are commonly used for distributed sensing in oil wells. In typical down-hole environment fibers are subjected to a significant mechanical stress at high temperatures and pressures. To prevent mechanical destruction of the fiber surface, optical fibers are coated with a thin carbon layer. Although the considerable advance has been achieved in coating technologies, there is still no full understanding of the causes of microscopic cracks on the surface of the protective layer, which contribute to hydrogen penetration into the fiber core. In this work, we have characterized the surface structure of hermetic carbon coatings of different thicknesses, from 1 to 100 nm, using atomic force microscopy (AFM) and far- and near-field Raman spectroscopy. Based on the obtained results, we have determined the optimal composition, thickness, and morphology of the carbon layer that ensure the best hermetic properties of the layer with sufficient mechanical strength. In addition, the formation of carbon allotropes – nanotubes, graphene, soot, and fullerenes – in the protecting carbon layer has been revealed by near-field Raman spectroscopy. These allotropes can serve as additional pathways for diffusion of molecular hydrogen through the carbon layer onto silica glass.
Keywords: optical fiber sensor, carbon-coated optical fibers, carbon allotropes, atomic force microscopy, near-field Raman spectroscopy, optical antenna.
@article{UZKU_2018_160_1_a12,
     author = {S. V. Saparina and S. S. Kharintsev},
     title = {Characterization of carbon nanolayer of optical fibers via near-field {Raman} spectroscopy},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {126--134},
     year = {2018},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a12/}
}
TY  - JOUR
AU  - S. V. Saparina
AU  - S. S. Kharintsev
TI  - Characterization of carbon nanolayer of optical fibers via near-field Raman spectroscopy
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 126
EP  - 134
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a12/
LA  - ru
ID  - UZKU_2018_160_1_a12
ER  - 
%0 Journal Article
%A S. V. Saparina
%A S. S. Kharintsev
%T Characterization of carbon nanolayer of optical fibers via near-field Raman spectroscopy
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 126-134
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a12/
%G ru
%F UZKU_2018_160_1_a12
S. V. Saparina; S. S. Kharintsev. Characterization of carbon nanolayer of optical fibers via near-field Raman spectroscopy. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 126-134. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a12/

[1] Bolognini G., Hartog A., “Raman-based fibre sensors: Trends and applications”, Opt. Fiber Technol., 19:6 (2013), 678–688 | DOI

[2] Siska P., Latal J., Bujok P., Vanderka A., Klempa M., Koudelka P., Vasinek V., Pospisil P., “Optical fiber based distributed temperature systems deployment for measurement of boreholes temperature profiles in the rock massif”, Opt. Quant. Electron., 48 (2016), Art. 108, 21 pp. | DOI

[3] Suh K., Lee C., “Auto-correction method for differential attenuation in a fiber-optic distributed-temperature sensor”, Opt. Lett., 33 (2008), 1845–1847 | DOI

[4] Her S. C., Huang C. Y., “Effect of Coating on the Strain Transfer of Optical Fiber Sensors ”, Sensors, 11 (2011), 6926–6941 | DOI

[5] Stolov A. A., Lombardo J. J., Slyman B. E., Li J., Chiu W. K. S., “Carbon coatings on silica glass optical fibers studied by reflectance Fourier-transform infrared spectroscopy and focused ion beam scanning electron microscopy”, Thin Solid Films, 520 (2012), 4224–4248 | DOI

[6] Reinsch T., Henninges J., “Temperature-dependent characterization of optical fibres for distributed temperature sensing in hot geothermal wells”, Meas. Sci. Technol., 21:9 (2010), Art. 094022, 8 pp. | DOI

[7] Beyssac O., Goffe B., Petitet J.-P., Froigneux E., Moreau M., Rouzaud J.-N., “On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy”, Spectrochim. Acta. Part A, 59:10 (2003), 2267–2276 | DOI

[8] Hayazawa N., Inouye Y., Sekkat Z., Kawata S., “Metallized tip amplification of near-field Raman scattering”, Opt. Commun., 183:1–4 (2000), 333–336 | DOI

[9] Hoffmann G. G., de With G., Loos J., “Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes”, Macromol. Symp., 265:1 (2008), 1–11 | DOI

[10] Sadezky A., Muckenhuber H., Grothe H., Niessner R., Poschl U., “Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information”, Carbon, 43:8 (2005), 1731–1742 | DOI

[11] Shiue S.-T., Hsiao H.-H., Shen T.-Y., Lin H.-Ch., Lin K.-M., “Mechanical strength and thermally induced stress voids of carbon-coated optical fibers prepared by plasma method with different enhanced chemical vapor deposition hydrogen/methane ratio”, Thin Solid Films, 483:1–2 (2005), 140–146 | DOI

[12] Chakravarthy S. S., Chiu W. K. S., “Failure of optical fibers with thin hard coatings”, J. Lightwave Technol., 24:3 (2006), 1356–1363 | DOI