Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 473-492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Cycling tension tests of the specimens from symmetric angle-ply laminate based on ELUR-P unidirectional carbon fiber and XT-118 cold-hardening epoxy have been carried out. Using the obtained experimental results, the process of residual strains formation has been investigated and qualitatively analyzed. It has been shown that there is such a level of ultimate stress in cycling loading conditions for the composite under investigation in the principal material axes, below which stabilization of the strain increment parameter at each loading cycle occurs. A method has been developed for determining the residual strains at each loading cycle by introducing the secant moduli of elasticity in the loading and unloading paths and their determination from the stress-strain curve. For several loading rates, which differ significantly from each other, the experimental dependencies of secant moduli formed in the loading and unloading paths on the cycle number have been obtained. A method has been proposed, which allows to isolate a viscoelastic component from the total strain accumulated during the cycling loading. This is specified by the epoxy creeping in the shear conditions. It has been found that the total strain for the fiber reinforced plastics under consideration can be represented as a sum of the viscoelastic part, which is recoverable over time, and the residual strain, which is probably associated with unrecoverable structural changes in the composite.
Keywords: unidirectional carbon fiber reinforced plastic, angle-ply laminate, specimen, cycling tension, unloading, secant modulus of elasticity, residual strain, creep strain, adaptability, unconvertible component of strain, viscoelastic convertible component of strain.
@article{UZKU_2017_159_4_a4,
     author = {V. N. Paimushin and S. A. Kholmogorov and R. A. Kayumov},
     title = {Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {473--492},
     year = {2017},
     volume = {159},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a4/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - S. A. Kholmogorov
AU  - R. A. Kayumov
TI  - Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 473
EP  - 492
VL  - 159
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a4/
LA  - ru
ID  - UZKU_2017_159_4_a4
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A S. A. Kholmogorov
%A R. A. Kayumov
%T Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 473-492
%V 159
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a4/
%G ru
%F UZKU_2017_159_4_a4
V. N. Paimushin; S. A. Kholmogorov; R. A. Kayumov. Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 473-492. http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a4/

[1] Ashcroft I. A., Hughes D. J., Shaw S. J., “Adhesive bonding of fibre reinforced polymer composite materials”, Assem. Autom., 20:2 (2000), 150–161 | DOI

[2] Bunsell A. R., Renard J., Fundamentals of Fibre Reinforced Composite Materials, CRC Press, Boca Raton, 2005, 225 pp.

[3] Hodzic A., Shanks B., Natural fibre composites: materials, processes and properties, Woodhead Pub., Philadelphia, PA, 2014, 389 pp.

[4] Pickering K. L., Aruan Efendy M. G., Le T. M., “A review of recent developments in natural fibre composites and their mechanical performance”, Composites. Part A, 83 (2016), 98–112 | DOI

[5] Badriev I. B., Makarov M. V., Paymushin V. N., “Mathematical Simulation of Nonlinear Problem of Three-point Composite Sample Bending Test”, Procedia Eng., 150 (2016), 1056–1062 | DOI

[6] Van Paepegem W., Degrieck J., “A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites”, Int. J. Fatigue, 24 (2002), 747–762 | DOI | Zbl

[7] Van Paepegem W., “Fatigue damage modelling of composite materials with the phenomenological residual stiffness approach”, Fatigue Life Predict. Compos. Compos. Struct., 1 (2010), 102–138

[8] Razvan A., Reifsnider K. L., “Fiber fracture and strength degradation in unidirectional graphite/epoxy composite materials”, Theor. Appl. Fract. Mech., 16 (1991), 81–89 | DOI

[9] Reifsnider K. L., Zhanjun Gao, “A micromechanics model for composites under fatigue loading”, Int. J. Fatigue, 13:2 (1992), 149–156 | DOI

[10] Keiichiro T., Shiuji N., Kazuro K., “Fatigue behavior of CFRP cross-ply laminates under on-axis and off-axis cyclic loading”, Int. J. Fatigue, 28 (2006), 1254–1262 | DOI | Zbl

[11] Kawai M., “A phenomenological model for off-axis fatigue behavior of unidirectional polymer matrix composites under different stress ratios”, Composites. Part A, 35 (2004), 955–963 | DOI

[12] Whitworth H. A., “A stiffness degradation model for composite laminates under fatigue loading”, Compos. Struct., 40:2 (1998), 95–101 | DOI

[13] Xu J., Lomov S. V., Verpoest I., Daggumati S., Van Paepegem W., Degrieck J., “A comparative study of twill weave reinforced composites under tension-tension fatigue loading: Experiments and meso-modelling”, Compos. Struct., 135 (2016), 306–315 | DOI

[14] Kawai M., Yajima S., Hachinohe A., Takano Y., “Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures”, J. Compos. Mater., 35:7 (2001), 545–576 | DOI

[15] Hahn H. T., Tsai S. W., “Nonlinear elastic behavior of unidirectional composite laminae”, J. Compos. Mater., 7:1 (1973), 102–118 | DOI

[16] Ditcher A. K., Webber J. P. H., Rhodes F. E., “Non-linear stress-strain behaviour of carbon fibre reinforced plastic laminates”, J. Strain Anal. Eng. Des., 16:1 (1981), 43–51 | DOI

[17] Dumansky A. M., Tairova L. P., Gorlach I., Alimov M. A., “A design-experiment study of nonlinear properties of coal-plastic”, J. Mach. Manuf. Reliab., 40:5, 483–488 | DOI

[18] Herakovich C. T. Schroedter R. D., Gasser A., Guitard A., “Damage evolution in $[+/-45]_{s}$ laminates with fiber rotation”, Compos. Sci. Technol., 60 (2000), 2781–2789 | DOI

[19] Paimushin V. N., Firsov V. A., Kholmogorov S. A., “Nonlinear behavior of the carbon fiber-reinforced plastic in shear conditions”, Proc. XXII Int. Symp. “Dynamical and Technological Problems of Structural and Continuum Mechanics”, TRP, Moscow, 2016, 143–145 (In Russian)

[20] Van Paepegem W., De Baere I., Degrieck J., “Modelling the nonlinear shear stress-strain response of glass fiber-reinforced composites. Part I: Experimental results”, Compos. Sci. Technol., 66 (2006), 1455–1464 | DOI

[21] Paimushin V. N., Tarlakovskii D. V., Kholmogorov S. A., “On non-classical buckling mode and failure of composite laminated specimens under the three-point bending”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 3, 2016, 350–375 (In Russian)

[22] Paimushin V. N., Kholmogorov S. A., Badriev I. B., “Theoretical and experimental investigations of the formation mechanisms of residual deformations of fibrous layered structure composites”, MATEC Web of Conf., 129 (2017), Art. 02042, 5 pp. | DOI

[23] Vasil'ev V. V., Dudchenko A. A., Elpat'evskii A. N., “Analysis of the tensile deformation of glass-reinforced plastics”, Polym. Mech., 6:1 (1970), 127–130 | DOI

[24] Obraztsov I. F., Vasil'ev V. V., Bunakov V. A., The Optimal Reinforce of Shell of Revolution from Composite Materials, Mashinostroenie, Moscow, 1977, 144 pp. (In Russian)

[25] Alfutov N. A., Zinov'ev P. A., Popov B. G., Design of Multilayered Plates and Shells of Composite Materials, Mashinostroenie, Moscow, 1984, 264 pp. (In Russian)