Controlling the finite rotation of an elastic system from one state to another with vibration suppression at the final moment of operation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 429-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of passive control of an arbitrary elastic system that performs a finite rotation in the general case with acceleration or breaking about the unmovable axis and small nonstationary vibration under the impact of an arbitrarily distributed load proportional to some unknown finite function has been considered. The equations of motion of the system have been written in the normal coordinates which represent the eigenmodes of the free rotating system. In this case, the finite rotation of the system as an absolutely rigid body is represented by the zero mode. It is required that, at the end of the system rotation at the given angle and for the given time, elastic oscillations are eliminated for several lower eigenmodes. An unknown control function (control law) is sought for the considered time interval in the form of a series of sinuses (and also cosines) with unknown coefficients. On the basis of the exact solution of the equations in normal coordinates with initial and final conditions, the problem reduces to a system of linear algebraic equations for unknown coefficients. As an example, a roll rotation on a finite angle from one state of rest to another of spacecraft with two symmetrical multi-link solar panels has been considered. Calculations have been carried out for various numbers of eigenmodes to be eliminated with comparisons relative to the numerical solutions of the equations in generalized coordinates under the found control actions. It has been shown that in order to obtain a practically acceptable accuracy, it is sufficient to eliminate the vibrations of not more than two or three the lowest eigenmodes.
Keywords: vibration control, final turn of system, unsteady vibrations, suppression of elastic vibrations, solution in series, turn of a vehicle.
@article{UZKU_2017_159_4_a1,
     author = {T. V. Grishanina and S. V. Russkikh and F. N. Shklyarchuk},
     title = {Controlling the finite rotation of an elastic system from one state to another with vibration suppression at the final moment of operation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {429--443},
     year = {2017},
     volume = {159},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a1/}
}
TY  - JOUR
AU  - T. V. Grishanina
AU  - S. V. Russkikh
AU  - F. N. Shklyarchuk
TI  - Controlling the finite rotation of an elastic system from one state to another with vibration suppression at the final moment of operation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 429
EP  - 443
VL  - 159
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a1/
LA  - ru
ID  - UZKU_2017_159_4_a1
ER  - 
%0 Journal Article
%A T. V. Grishanina
%A S. V. Russkikh
%A F. N. Shklyarchuk
%T Controlling the finite rotation of an elastic system from one state to another with vibration suppression at the final moment of operation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 429-443
%V 159
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a1/
%G ru
%F UZKU_2017_159_4_a1
T. V. Grishanina; S. V. Russkikh; F. N. Shklyarchuk. Controlling the finite rotation of an elastic system from one state to another with vibration suppression at the final moment of operation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 429-443. http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a1/

[1] Chernous'ko F. L., Bolotnik N. N., Gradeckij V. G., Manipulation Robots: Dynamics, Control, Optimization, Nauka, Moscow, 1989, 363 pp. (In Russian) | MR

[2] Kovaleva A. S., Control of Vibratory and Vibro-Impact Systems, Nauka, Moscow, 1990, 256 pp. (In Russian) | MR

[3] Kolesnikov K. S., Kokushkin V. V., Borzyh S. V., Pankova N. V., Calculation and Design of Rocket Stage Separation Systems, Izd. Mosk. Gos. Tekh. Univ. im. Baumana, Moscow, 2006, 376 pp. (In Russian)

[4] Nurre G. S., Ryan R. S., Scofield H. N., Sims J. I., “Dynamics and control of large space structures”, J. Guidance, Control and Dynamics, 7:5 (1984), 514–526 | DOI | Zbl

[5] Degtyarev G. L., Sirazetdinov T. K., Theoretical Foundations of Optimal Control of Elastic Spacecraft, Mashinostroenie, Moscow, 1986, 216 pp. (In Russian)

[6] Das S. K., Utku S., Wada B. K., “Inverse dynamics of adaptive space cranes with tip point adjustment”, 31st Structures, Structural Dynamics and Materials Conf., 1990, Art. AIAA-90-1166-CP, 2367–2374

[7] Bainum P. M., Li F., “Optimal large angle maneuvers of a flexible spacecraft”, Acta Astronautica, 25:3 (1991), 141–148 | DOI

[8] Chan J. K., Modi V. J., “A Closed-form dynamical analysis of an orbiting flexible manipulator”, Acta Astronautica, 25:2 (1991), 67–76 | DOI

[9] Meirovitch L., Kwak M. K., “Control of flexible spacecraft with time-varying configuration”, J. Control, Guidance and Dynamics, 15:2 (1992), 314–324 | DOI | Zbl

[10] Miller D. W., Crawley E. F.“. Theoretical and experimental investigation of space-realizable inertial actuation for passive and active structural control”, J. Guidance, Control, and Dynamics, 11:5 (1988), 449–458 | DOI

[11] Zakrzhevskii A. E., “Optimal slewing of a flexible spacecraft”, Int. Appl. Mech., 39:10 (2003), 1208–1214 | DOI

[12] Rotenberg Ja. N., Automatic Control, Nauka, Moscow, 1971, 396 pp. (In Russian) | MR

[13] Voronov A. A., Introduction to the Dynamics of Complex Control Systems, Nauka, Moscow, 1985, 352 pp. (In Russian) | MR

[14] Razygraev A. P., Fundamentals of Flight Control of Spacecraft, Mashinostroenie, Moscow, 1990, 480 pp. (In Russian)

[15] Ganiev R. F., Zakrezhevskii A. E., Programmed Motions of Controlled Deformable Structures, Nauka, Moscow, 1995, 213 pp. (In Russian)

[16] Masters B. P., Crawley E. F., “Evolutionary design of controlled structures”, J. Aircraft., 36:1 (1999), 209–217 | DOI

[17] Matyukhin V. I., Control of Mechanical Systems, Fizmatlit, Moscow, 2009, 320 pp. (In Russian)

[18] Chernous'ko F. L., Akulenko L. D., Sokolov B. N., Control of Oscillations, Nauka, Moscow, 1976, 383 pp. (In Russian)

[19] Chernous'ko F. L., Anan'evskii I. M., Reshmin S. A., Methods for Control of Nonlinear Mechanical Systems, Fizmatlit, Moscow, 2006, 326 pp. (In Russian)

[20] Berbyuk V. B., Dynamics and Optimization of Robotic Systems, Naukova Dumka, Kiev, 1989, 187 pp. (In Russian)

[21] Kubyshkin E. P., “Optimum control of rotation of a rigid body with a flexible rod”, Prikl. Mat. Mekh., 56:8 (2003), 240–249 (In Russian) | MR | Zbl

[22] Grishanina T. V., “Controlled turn of an elastic rod at the finite angle”, Vestn. MAI, 11:1 (2004), 64–68 (In Russian)

[23] Grishanina T. V., “Elimination of elastic system vibrations after its rapid movement and turn”, Vestn. MAI, 11:2 (2004), 68–75 (In Russian)

[24] Grishanina T. V., “Dynamics of controlled motion of elastic systems with finite displacements and turns”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2004, no. 6, 171–186 (In Russian)

[25] Grishanina T. V., Shklyarchuk F. N., Dynamics of Elastic Controlled Structures, Izd. MAI, Moscow, 2007, 383 pp. (In Russian)