Sectio aurea conditions for Mityuk's radius of two-connected domains
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 1, pp. 33-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Connection of an exterior inverse boundary value problem with the critical points of some surface is one of the central themes in the theory of exterior inverse boundary value problems for analytic functions. In the simply connected case, such a surface is defined by the inner mapping radius; in the multiply connected one, by the function $\Omega(w)$ such that $\mathrm M(w)=(2\pi)^{-1}\ln\Omega(w)$ is Mityuk's version of a generalized reduced module. In the present paper, the relation between the curvature of the surface $\Omega=\Omega(w)$ with the Schwarzian derivatives of the mapping functions and with the Bergman kernel functions $k_0(w,\overline\omega)$ and $l_0(w,\omega)$ is established for an arbitrary multiply connected domain. When passing to two-connected domains, due to the choice of the ring as a canonical domain, we construct the conditions for the critical points of Mityuk's radius to concentrate on the golden section circle of the ring. Finally, we show that the minimal collection of the critical points of the Mityuk radius in the two-connected case, consisting of one maximum and one saddle, is attained for the linear-fractional solution of the exterior inverse boundary value problem.
Keywords: exterior inverse boundary value problem, multiply connected domain, Gakhov equation, Mityuk's radius, inner mapping (conformal) radius, hyperbolic derivative.
@article{UZKU_2017_159_1_a3,
     author = {A. V. Kazantsev},
     title = {Sectio aurea conditions for {Mityuk's} radius of two-connected domains},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {33--46},
     year = {2017},
     volume = {159},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a3/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - Sectio aurea conditions for Mityuk's radius of two-connected domains
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 33
EP  - 46
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a3/
LA  - ru
ID  - UZKU_2017_159_1_a3
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T Sectio aurea conditions for Mityuk's radius of two-connected domains
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 33-46
%V 159
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a3/
%G ru
%F UZKU_2017_159_1_a3
A. V. Kazantsev. Sectio aurea conditions for Mityuk's radius of two-connected domains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 1, pp. 33-46. http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a3/

[1] Gakhov F. D., “On inverse boundary-value problems”, Dokl. Akad. Nauk SSSR, 86:4 (1952), 649–652 (In Russian) | Zbl

[2] Aksent'ev L. A., Kinder M. I., Sagitova S. B., “Solvability of the exterior inverse boundary value problem in the case of multiply connected domain”, Tr. Semin. Kraev. Zadacham, 20, Kazan. Gos. Univ., Kazan, 1983, 22–34 (In Russian) | MR | Zbl

[3] Aksent'ev L. A., “The connection of the exterior inverse boundary value problem with the inner radius of the domain,”, Izv. Vyssh. Uchebn. Zaved., Mat., 1984, no. 2, 3–11 (In Russian) | MR | Zbl

[4] Mityuk I. P., “A generalized reduced module and some of its applications”, Izv. Vyssh. Uchebn. Zaved., Mat., 1964, no. 2, 110–119 (In Russian) | Zbl

[5] Kazantsev A. V., Extremal properties of inner radii and their applications, Cand. Phys.-Math. Sci. Diss., Kazan, 1990, 145 pp. (In Russian)

[6] Kazantsev A. V., Investigation of the modified inner radius of two connected domains, Dep. in VINITI on Dec. 27, 1988, no. 9053-B88, 1988, 22 pp. (In Russian)

[7] Kinder M. I., “The number of solutions of F. D. Gakhov's equation in the case of a multiply connected domain”, Sov. Math., 28:8 (1984), 91–95 | MR | Zbl

[8] Kinder M. I., “Investigation of F. D. Gakhov's equation in the case of multiply connected domains”, Tr. Semin. Kraev. Zadacham, 22, Kazan. Gos. Univ., Kazan, 1985, 104–116 (In Russian) | MR | Zbl

[9] Bergman S., Schiffer M., “Kernel functions and conformal mapping”, Compositio Math., 8:3 (1951), 205–249 | MR | Zbl

[10] Sokolov A. M., Basic Concepts of Architectural Design, Leningr. Gos. Univ., Leningrad, 1976, 192 pp. (In Russian)

[11] Bakelman I. Ya., Verner A. L., Kantor B. E., Introduction to the Differential Geometry “in the Large”, Nauka, Moscow, 1973, 440 pp. (In Russian) | MR

[12] Aksent'ev L. A., Kazantsev A. V., “A new property of the Nehari class and its application”, Tr. Semin. Kraev. Zadacham, 25, Kazan. Gos. Univ., Kazan, 1990, 33–51 (In Russian) | MR | Zbl

[13] Szegö G., “On the capacity of a condenser”, Bull. Amer. Math. Soc., 51:5 (1945), 325–350 | DOI | MR | Zbl

[14] Nehari Z., “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[15] Kraus W., “Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Sem. Giessen, 21 (1932), 1–28 | Zbl

[16] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR

[17] Kiselev A. V., “Geometric properties of solutions of the exterior inverse boundary value problem”, Russ. Math., 36:7 (1992), 18–23 | MR | Zbl

[18] Lebedev N. A., The Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975, 336 pp. (In Russian) | MR

[19] Bergman S., The kernel function and conformal mapping, Math. Surveys, 5, Amer. Math. Soc., 1950, 161 pp. | MR | Zbl

[20] Gakhov F. D., Boundary Value Problems, Nauka, Moscow, 1977, 640 pp. (In Russian) | MR

[21] Tumashev G. G., Nuzhin M. T., Inverse Boundary Value Problems and Their Applications, Kazan. Gos. Univ., Kazan, 1965, 333 pp. (In Russian) | MR

[22] Aksent'ev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “Classes of uniqueness of an exterior inverse boundary value problem”, Tr. Semin. Kraev. Zadacham, 24, Kazan. Gos. Univ., Kazan, 1990, 39–62 (In Russian) | MR

[23] Akhiezer N. I., Elements of the Theory of Elliptic Functions, Nauka, Moscow, 1970, 304 pp. (In Russian) | MR

[24] Gehring F. W., Pommerenke Ch., “On the Nehari univalence criterion and quasicircles”, Comment. Math. Helv., 59 (1984), 226–242 | DOI | MR | Zbl

[25] Kazantsev A. V., “Bifurcations and new uniqueness criteria for critical points of hyperbolic derivatives”, Lobachevskii J. Math., 32:4 (2011), 426–437 | DOI | MR | Zbl | Zbl