Evolution of perturbations in the spherical shape of a cavitation bubble during its implosive collapse
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 79-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the growth of small deviations in the spherical shape of a cavitation bubble during its single strong compression. At the beginning of compression, the vapor in the bubble cavity is in the state of saturation. The deviations from sphericity are taken in the form of spherical harmonics of degree $n=2,3,\dots$. The dynamics of the vapor in the bubble and the surrounding liquid is presented as a superposition of the spherical component and its nonspherical perturbation. The spherical component of the liquid and vapor dynamics is described by gas dynamics equations since shock waves may arise in the bubble during the final high-speed stage of compression and the liquid compressibility becomes significant. The nonstationary heat conductivity of the liquid and vapor and the nonequilibrium of evaporation/condensation on the interface are taken into account. Realistic wide-range equations of state are applied. The nonspherical component is described allowing for the effects of liquid viscosity, surface tension, density of the vapor in the bubble and inhomogeneity of its pressure. The collapse of the cavitation bubble in water and acetone is considered at the liquid pressure $p_\infty$, the initial radius $R_0$ and the liquid temperature $T_0$, which vary in the ranges $250\leq R_0\leq1000$ mcm, $1\leq p_\infty\leq50$ bar, $20\leq T_0\leq40\,^\circ$ C for water and $0\leq T_0\leq20\,^\circ$ C for acetone. It is found that in the case of $R_0=500$ mcm, $p_\infty\leq50$ bar, $T_0=20\,^\circ$ C for water and $T_0=0\,^\circ$ C for acetone, the amplitude of the small nonsphericity of the bubble in the form of individual spherical harmonics may increase during compression up to 2000 times in water and up to 150 times in acetone. The growth of nonsphericity is studied as a function of a number of important factors such as the initial bubble radius, liquid pressure, liquid viscosity, evaporation/condensation on the bubble surface, the presence of vapor in the bubble, heat conductivity in the vapor and liquid, etc.
Keywords: cavitation bubble, vapor bubble, collapse of a bubble, compression of a bubble, distortion from a spherical shape, deformation of a bubble.
@article{UZKU_2014_156_1_a7,
     author = {R. I. Nigmatulin and A. A. Aganin and M. A. Ilgamov and D. Yu. Toporkov},
     title = {Evolution of perturbations in the spherical shape of a~cavitation bubble during its implosive collapse},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {79--108},
     year = {2014},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a7/}
}
TY  - JOUR
AU  - R. I. Nigmatulin
AU  - A. A. Aganin
AU  - M. A. Ilgamov
AU  - D. Yu. Toporkov
TI  - Evolution of perturbations in the spherical shape of a cavitation bubble during its implosive collapse
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 79
EP  - 108
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a7/
LA  - ru
ID  - UZKU_2014_156_1_a7
ER  - 
%0 Journal Article
%A R. I. Nigmatulin
%A A. A. Aganin
%A M. A. Ilgamov
%A D. Yu. Toporkov
%T Evolution of perturbations in the spherical shape of a cavitation bubble during its implosive collapse
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 79-108
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a7/
%G ru
%F UZKU_2014_156_1_a7
R. I. Nigmatulin; A. A. Aganin; M. A. Ilgamov; D. Yu. Toporkov. Evolution of perturbations in the spherical shape of a cavitation bubble during its implosive collapse. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 79-108. http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a7/

[1] Flannigan D. J., Suslick K. S., “Inertially confined plasma in an imploding bubble”, Nature Physics, 6 (2010), 598–601 | DOI

[2] Moss W. C., Clarke D. B., Young D. A., “Calculated pulse widths and spectra of a single sonoluminescing bubble”, Science, 276 (1997), 1398–1401 | DOI

[3] Nigmatulin R. I., Akhatov I. Sh., Topolnikov A. S., Bolotnova R. Kh., Vakhitova N. K., Lahey R. T. (Jr.), Taleyarkhan R. P., “The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion”, Phys. Fluids, 17 (2005), 107106, 31 pp. | DOI | Zbl

[4] Bass A., Ruuth S. J., Camara C., Merriman B., Putterman S., “Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble”, Phys. Rev. Lett., 101:23 (2008), 234301, 4 pp. | DOI

[5] Taleyarkhan R. P., West C. D., Cho J. S., Lahey R. T. (Jr.), Nigmatulin R. I., Block R. C., “Evidence for nuclear emissions during acoustic cavitation”, Science, 295 (2002), 1868–1873 | DOI

[6] Taleyarkhan R. P., West C. D., Cho J. S., Lahey R. T. (Jr.), Nigmatulin R. I., Block R. C., “Additional evidence of nuclear emissions during acoustic cavitation”, Phys. Rev. E, 69 (2004), 036109, 11 pp. | DOI

[7] Taleyarkhan R. P., West C. D., Lahey R. T. (Jr.), Nigmatulin R. I., Block R. C., Xu Y., “Nuclear emissions during self-nucleated acoustic cavitation”, Phys. Rev. Lett., 96 (2006), 034301, 4 pp. | DOI

[8] Birkhoff G., “Note on Taylor instability”, Quart. Appl. Math., 12 (1954), 306–309 | MR | Zbl

[9] Plesset M. S., “On the stability of fluid flows with spherical symmetry”, J. Appl. Phys., 25 (1954), 96–98 | DOI | MR | Zbl

[10] Birkhoff G., “Stability of spherical bubbles”, Quart. Appl. Math., 13 (1956), 451–453 | MR | Zbl

[11] Plesset M. S., Mitchell T. P., “On the stability of the spherical shape of a vapor cavity in a liquid”, Quart. Appl. Math., 13 (1956), 419–430 | MR | Zbl

[12] Kull H. J., “Theory of the Rayleigh–Taylor instability”, Phys. Rep., 206 (1991), 197–325 | DOI

[13] Hilgenfeldt S., Brenner M., Grossmann S., Lohse D., “Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles”, J. Fluid Mech., 365 (1998), 171–204 | DOI | Zbl

[14] Putterman S. J., Weninger K. P., “Sonoluminescence: How bubbles turn sound into light”, Annu. Rev. Fluid Mech., 32 (2000), 445–476 | DOI | Zbl

[15] Lin H., Storey B. D., Szeri A. J., “Rayleigh–Taylor instability of violently collapsing bubbles”, Phys. Fluid, 14 (2002), 2925–2928 | DOI

[16] Flynn H. G., “Cavitation dynamics. I. A mathematical formulation”, J. Acoust. Soc. Am., 57 (1975), 1379–1396 | DOI | Zbl

[17] Keller J. B., Miksis M., “Bubble oscillations of large amplitude”, J. Acoust. Soc. Am., 55 (1980), 628–633 | DOI

[18] Prosperetti A., Crum L. A., Commander K. W., “Nonlinear bubble dynamics”, J. Acoust. Soc. Am., 83 (1986), 502–514 | DOI

[19] Nigmatulin R. I., Dinamika mnogofaznykh sred, v 2 t., Nauka, M., 1987

[20] Nigmatulin R. I., Akhatov I. Sh., Vakhitova N. K., “O szhimaemosti zhidkosti v dinamike gazovogo puzyrka”, Dokl. RAN, 348:6 (1996), 768–771 | MR

[21] Wu C. C., Roberts P. H., “Shock-Wave Propagation in a Sonoluminescing Gas Bubble”, Phys. Rev. Lett., 70 (1993), 3424–3427 | DOI

[22] Wu C. C., Roberts P. H., “A model of sonoluminescence”, Proc. R. Soc. Lond. A, 445 (1994), 323–349 | DOI

[23] Moss W. C., Clarke D. B., White J. W., Young D. A., “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence”, Phys. Fluids, 6 (1994), 2979–2985 | DOI

[24] Aganin A. A., Nigmatulin R. I., Ilgamov M. A., Akhatov I. Sh., “Dinamika puzyrka gaza v tsentre sfericheskogo ob'ema zhidkosti”, Dokl. RAN, 369:2 (1999), 182–185 | Zbl

[25] Aganin A. A., “Dynamics of a small bubble in a compressible fluid”, Int. J. Numer. Meth. Fluids, 33 (2000), 157–174 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[26] Nigmatulin R. I., Aganin A. A., Ilgamov M. A., Toporkov D. Yu., “Iskazhenie sferichnosti parovogo puzyrka v deiterirovannom atsetone”, Dokl. RAN, 408:6 (2006), 767–771

[27] Nigmatulin R. I., Bolotnova R. Kh., “Shirokodiapazonnoe uravnenie sostoyaniya organicheskikh zhidkostei na primere atsetona”, Dokl. RAN, 415:5 (2007), 617–621 | Zbl

[28] Nigmatulin R. I., Bolotnova R. Kh., “Shirokodiapazonnoe uravnenie sostoyaniya vody i para. Uproschennaya forma”, Teplofizika vysokikh temperatur, 49:2 (2011), 310–313

[29] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[30] Eller A. I., Crum L. A., “Instability of the motion of a pulsating bubble in a sound field”, J. Acoust. Soc. Am. Suppl., 47 (1970), 762–767 | DOI

[31] Prosperetti A., “Viscous effects on perturbed spherical flows”, Quart. Appl. Math., 34 (1977), 339–352 | Zbl

[32] Hilgenfeldt S., Lohse D., Brenner M., “Phase diagrams for sonoluminescing bubbles”, Phys. Fluids, 8 (1996), 2808–2826 | DOI | Zbl

[33] Hao Y., Prosperetti A., “The effect of viscosity on the spherical stability of oscillating gas bubbles”, Phys. Fluids, 11 (1999), 1309–1317 | DOI | MR | Zbl

[34] Kwak H.-Y., Karng S. W., Lee Y. P., “Rayleigh–Taylor instability on a sonoluminescencing gas bubble”, J. Korean Phys. Soc., 45 (2005), 951–962

[35] Ilgamov M. A., “Kachestvennyi analiz razvitiya otklonenii ot sfericheskoi formy pri skhlopyvanii polosti v zhidkosti”, Dokl. RAN, 401:1 (2005), 37–40

[36] Ilgamov M. A., “Rasshirenie-szhatie i ustoichivost polosti v zhidkosti pri silnom akusticheskom vozdeistvii”, Dokl. RAN, 433:2 (2010), 178–181 | Zbl

[37] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[38] Lamb G., Gidrodinamika, OGIZ-Gostekhizdat, M., 1947, 928 pp.

[39] Aganin A. A., Ilgamov M. A., Toporkov D. Yu., “Vliyanie vyazkosti zhidkosti na zatukhanie malykh iskazhenii sfericheskoi formy gazovogo puzyrka”, Prikl. mekhanika i tekhn. fizika, 47:2 (2006), 30–39 | MR | Zbl

[40] Wu C. C., Roberts P. H., “Bubble shape instability and sonoluminescence”, Phys. Lett. A, 250 (1998), 131–136 | DOI

[41] Aganin A. A., Khismatullina N. A., “Liquid vorticity computation in non-spherical bubble dynamics”, Int. J. Numer. Meth. Fluids, 48 (2005), 115–133 | DOI | Zbl

[42] Augsdorfer U. H., Evans A. K., Oxley D. P., “Thermal noise and the stability of single sonoluminescing bubbles”, Phys. Rev. E, 61 (2000), 5278–5286 | DOI

[43] Yuan L., Ho C. Y., Chu M.-C., Leung P. T., “Role of gas density in the stability of single-bubble sonoluminescence”, Phys. Rev. E, 64 (2001), 016317, 6 pp. | DOI

[44] Lin H., Storey B. D., Szeri A. J., “Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation”, J. Fluid Mech., 452 (2002), 145–162 | DOI | MR | Zbl

[45] Aganin A. A., Toporkov D. Yu., Khalitova T. F., Khismatullina N. A., “Evolyutsiya malykh iskazhenii sfericheskoi formy parovogo puzyrka pri ego sverkhszhatii”, Matem. modelirovanie, 23:10 (2011), 82–96 | MR | Zbl

[46] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika, OGIZ-Gostekhizdat, M., 1948, 612 pp.

[47] Vargaftik N. B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei, Nauka, M., 1972, 720 pp.

[48] Trunin R. F., “Udarnaya szhimaemost kondensirovannykh veschestv v moschnykh udarnykh volnakh podzemnykh yadernykh vzryvov”, Usp. fiz. nauk, 164:11 (1994), 1215–1237 | DOI

[49] Trunin R. F., Zhernokletov M. V., Kuznetsov N. F., Radchenko O. A., Sichevskaya N. V., Shutov V. V., “Szhatie zhidkikh organicheskikh veschestv v udarnykh volnakh”, Khim. fizika, 11:3 (1992), 424–432

[50] Walsh J. M., Rice M. H., “Dynamic compression of liquids from measurements on strong shock waves”, J. Chem. Phys., 26 (1957), 815–823 | DOI

[51] Sharipdzhanov I. I., Altshuler L. V., Brusnikin S. E., “Anomalii udarnoi i izoentropicheskoi szhimaemosti vody”, Fizika goreniya i vzryva, 19:5 (1983), 149–153

[52] Ilgamov M. A., “Otklonenie ot sferichnosti parovoi polosti v moment ee kollapsa”, Dokl. RAN, 440:1 (2011), 35–38 | MR | Zbl