On the proving of convergence of multigrid methods
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 5-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with some problems concerning the proving of convergence of multigrid methods. Special attention is paid to the robust multigrid technique as a variant of geometric multigrid methods with problem-independent transfer operators. The matrix of multigrid iterations is obtained; its norm is estimated. A mesh-independent convergence rate is proved, and a comparison with the classical multigrid methods is performed.
Keywords: geometric multigrid method
Mots-clés : robust multigrid technique, convergence.
@article{UZKU_2012_154_4_a0,
     author = {S. I. Martynenko},
     title = {On the proving of convergence of multigrid methods},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--16},
     year = {2012},
     volume = {154},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a0/}
}
TY  - JOUR
AU  - S. I. Martynenko
TI  - On the proving of convergence of multigrid methods
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 5
EP  - 16
VL  - 154
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a0/
LA  - ru
ID  - UZKU_2012_154_4_a0
ER  - 
%0 Journal Article
%A S. I. Martynenko
%T On the proving of convergence of multigrid methods
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 5-16
%V 154
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a0/
%G ru
%F UZKU_2012_154_4_a0
S. I. Martynenko. On the proving of convergence of multigrid methods. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 5-16. http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a0/

[1] Olshanskii M. A., Lektsii i uprazhneniya po mnogosetochnym metodam, Fizmatlit, M., 2005, 168 pp. | Zbl

[2] Hackbusch W., Multi-Grid Methods and Applications, Springer-Verlag, Berlin–Heidelberg, 1985, 377 pp. | Zbl

[3] Martynenko S. I., “Universalnaya mnogosetochnaya tekhnologiya dlya chislennogo resheniya kraevykh zadach na strukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 1:1 (2000), 83–102

[4] Martynenko S. I., “Formalizatsiya vychislenii pri chislennom reshenii kraevykh zadach”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 76–90 | Zbl

[5] Martynenko S. I., “Universalnaya mnogosetochnaya tekhnologiya”, Matem. modelirovanie, 21:9 (2009), 66–79 | MR | Zbl

[6] Martynenko S. I., “Robust Multigrid Technique for Black Box Software”, Comp. Meth. Appl. Math., 6:4 (2006), 413–435 | MR | Zbl

[7] Martynenko S. I., “K voprosu o skhodimosti universalnoi mnogosetochnoi tekhnologii”, Matem. modelirovanie, 22:10 (2010), 18–34 | MR | Zbl