Non-LTEmodelling of AL I lines in atmospheres of late-type stars
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 2, pp. 95-101
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work, the results of the analysis of Al I lines forming in atmospheres of late-type stars (A–K) without assumption of local thermodynamic equilibrium are presented. We developed a 39-level model of aluminum atom containing levels with $l\leq3$ and $n\leq12$ of Al I, and a level corresponding to the ground state of Al II. Based on the study of the line profiles and equivalent widths in the solar spectrum, we refined some atomic parameters for Al I lines ($\lambda\lambda$ 3944.01 Å, 3961.52 Å, 6693.03 Å, 6698.68 Å, 7362.29 Å, 7836.13 Å). For the selected Al I lines, grids of non-LTE corrections to the Al abundance defined with the LTE assumption were calculated. The results of the calculations for Kurucz's atmosphere models (in a wide range of stellar parameters) allows us to conclude that the Al I atom is in an overionization state: the $3p$ level is underpopulated in the line formation region. This is due to the dominance of ionization processes from the ground level by UV radiation over the cascade transitions from the high-excited levels, which is caused by a great value of the $3p$ level ionization cross section. This effect becomes more pronounced with increasing temperature and decreasing metallicity of the star. Non-LTE corrections to the Al abundance reach $(0.15\div0.25)$ dex for subordinate line $\lambda$ 6698.68 Å, $(0.4\div0.7)$ dex for subordinate line $\lambda$ 7836.13 Å, $(0.2\div0.45)$ dex for resonance line $\lambda$ 3961.52 Å, and it is $(0.6\div0.8)$ dex in the case of low metallicity ($[\mathrm A]=-2.0$) for certain atmosphere models.
Keywords: chemical composition, aluminum abundance, statistical equilibrium, late-type stars
Mots-clés : line formation, non-LTE corrections.
@article{UZKU_2011_153_2_a9,
     author = {V. S. Menzhevitski and V. V. Shimansky and N. N. Shimanskaya},
     title = {Non-LTEmodelling of {AL} {I} lines in atmospheres of late-type stars},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {95--101},
     year = {2011},
     volume = {153},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_2_a9/}
}
TY  - JOUR
AU  - V. S. Menzhevitski
AU  - V. V. Shimansky
AU  - N. N. Shimanskaya
TI  - Non-LTEmodelling of AL I lines in atmospheres of late-type stars
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 95
EP  - 101
VL  - 153
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_2_a9/
LA  - ru
ID  - UZKU_2011_153_2_a9
ER  - 
%0 Journal Article
%A V. S. Menzhevitski
%A V. V. Shimansky
%A N. N. Shimanskaya
%T Non-LTEmodelling of AL I lines in atmospheres of late-type stars
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 95-101
%V 153
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_2_a9/
%G ru
%F UZKU_2011_153_2_a9
V. S. Menzhevitski; V. V. Shimansky; N. N. Shimanskaya. Non-LTEmodelling of AL I lines in atmospheres of late-type stars. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 2, pp. 95-101. http://geodesic.mathdoc.fr/item/UZKU_2011_153_2_a9/

[1] Seaton M. J., Zeippen C. J., Tully J. A., Pradhan A. K., Mendoza C., Hibbert A., Berrington K. A., “The Opacity Project – Computation of Atomic Data”, Rev. Mex. Astron. Astrofis., 23 (1992), 19–43

[2] Ivanova D. V., Shimansky V. V., “NonLTE Analysis of the Na1 Lines in the Solar Spectrum”, Odessa Astron. Publ., 9 (1996), 66–67

[3] Mashonkina L. I., Shimanskaya N. N., Shimansky V. V., “Laws in Behaviour of NonLTE Effects for the Na I and Mg I Atoms for K–A Stars”, Odessa Astron. Publ., 9 (1996), 78–79

[4] Sakhibullin N. A., “Programmnye kompleksy po raschetu ne-LTR effektov v spektrakh zvezd”, Trudy Kazan. gor. astron. observ., 48, 1983, 9–21

[5] Auer L. H., Heasley J., “An alternative formulation of the complete linearization method for the solution of non-LTE transfer problems”, Astrophys. J., 205:1 (1976), 165–171 | DOI

[6] Kurucz R. L., Furenlid I., Brault J., Testerman L., Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas, 1, Nat. Solar Observ., Sunspot, New Mexico, 1984, 240 pp.

[7] Unsold A., Physik der Sternatmospheren, Springer, Berlin–Gottingen–Heidelberg, 1955, 630 pp. | Zbl

[8] Ivanova D. V., Shimanskii V. V., “Ne-LTR analiz formirovaniya linii K I v spektrakh A–K zvezd”, Astron. zhurn., 77 (2000), 432–446

[9] Mashonkina L. I., Shimanskii V. V., Sakhibullin N. A., “Ne-LTR effekty v spektralnykh liniyakh Na I v atmosferakh zvezd raznykh tipov”, Astron. zhurn., 77 (2000), 893–908

[10] Shimanskaya N. N., Mashonkina L. I., “Reviziya soderzhaniya Mg u zvezd galo i diska Galaktiki”, Astron. zhurn., 78 (2001), 122–136

[11] Kurucz R. L., ATLAS9 Stellar Atmospheres Programs and 2 km s-1Grid, Smithsonian Astrophys. Observ., Cambridge, 1993, (CD-ROM)

[12] Menzhevitskii V. S., Shimanskii V. V., Shimanskaya N. N., “Rezultaty ne-LTR modelirovaniya linii Al I v spektrakh zvezd pozdnikh klassov”, Kinem. i fiz. neb. tel., 2009, Pril. k No 6, 210–213