Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 180-194

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

The article describes bifurcation picture for the gradient zeros in the unit disk of the hyperbolic derivative of the holomorphic function imbedded in the family of its “level lines”. The dependence of the motion of zeros on the curvature of the hyperbolic derivative allows us to extend the Poincare–Hopf theorem to construct a new class of zero uniqueness criteria as the non-negativity of the curvature-like functionals. This class contains one-parameter series of Epstein inequalities, which are the reformulations of the Behnke–Peschl condition for the special Hartogs domains. A new rigidity phenomenon occurs: the inequalities mentioned above are contensive only for certain segment of parameters.
Keywords: hyperbolic derivative, conformal (inner mapping) radius, bifurcations of the critical points, linear invariance, Behnke–Peschl condition.
@article{UZKU_2011_153_1_a14,
     author = {A. V. Kazantsev},
     title = {Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {180--194},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 180
EP  - 194
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/
LA  - ru
ID  - UZKU_2011_153_1_a14
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 180-194
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/
%G ru
%F UZKU_2011_153_1_a14
A. V. Kazantsev. Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 180-194. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/