Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 180-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article describes bifurcation picture for the gradient zeros in the unit disk of the hyperbolic derivative of the holomorphic function imbedded in the family of its “level lines”. The dependence of the motion of zeros on the curvature of the hyperbolic derivative allows us to extend the Poincare–Hopf theorem to construct a new class of zero uniqueness criteria as the non-negativity of the curvature-like functionals. This class contains one-parameter series of Epstein inequalities, which are the reformulations of the Behnke–Peschl condition for the special Hartogs domains. A new rigidity phenomenon occurs: the inequalities mentioned above are contensive only for certain segment of parameters.
Keywords: hyperbolic derivative, conformal (inner mapping) radius, bifurcations of the critical points, linear invariance, Behnke–Peschl condition.
@article{UZKU_2011_153_1_a14,
     author = {A. V. Kazantsev},
     title = {Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {180--194},
     year = {2011},
     volume = {153},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2011
SP  - 180
EP  - 194
VL  - 153
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/
LA  - ru
ID  - UZKU_2011_153_1_a14
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2011
%P 180-194
%V 153
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/
%G ru
%F UZKU_2011_153_1_a14
A. V. Kazantsev. Bifurcations and new uniqueness criteria for the critical points of hyperbolic derivatives. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 153 (2011) no. 1, pp. 180-194. http://geodesic.mathdoc.fr/item/UZKU_2011_153_1_a14/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[2] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978, 432 pp.

[3] Haegi H. R., “Extremalprobleme und Ungleichungen konformer Gebietsgrössen”, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl

[4] Garnett J., Nicolau A., “Interpolating Blaschke products generate $H^\infty$”, Pacific J. Math., 173:2 (1996), 501–510 | MR | Zbl

[5] Yamashita S., “The Schwarzian derivative and local maxima of the Bloch derivative”, Math. Japonica, 37:6 (1992), 1117–1128 | MR | Zbl

[6] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matem., 1984, no. 2, 3–11 | MR | Zbl

[7] Kawohl B., Rearrangements and convexity of level sets in PDE, Lect. Notes Math., 1150, 1985, 136 pp. | MR | Zbl

[8] Avkhadiev F. G., Konformno-invariantnye neravenstva i ikh prilozheniya, Preprint NIIMM im. N. G. Chebotareva, Kazan. fond “Matematika”, Kazan, 1995, 26 pp. | MR

[9] Aksentev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “O klassakh edinstvennosti vneshnei obratnoi kraevoi zadachi”, Trudy seminara po kraevym zadacham, 24, Kazan. gos. un-t, Kazan, 1990, 39–62 | MR

[10] Gehring F. W., Pommerenke Ch., “On the Nehari univalence criterion and quasicircles”, Comment. Math. Helv., 59 (1984), 226–242 | DOI | MR | Zbl

[11] Aksentev L. A., Kazantsev A. V., “Novoe svoistvo klassa Nekhari i ego primenenie”, Trudy seminara po kraevym zadacham, 25, Kazan. un-t, Kazan, 1990, 33–51 ; Изв. вузов. Матем., 1989, No 8, 69–72 | MR | Zbl | MR | Zbl

[12] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazan. fond “Matematika”, Kazan, 1996, 216 pp. | MR | Zbl

[13] Kazantsev A. V., “On a problem of Polya and Szegö”, Lobachevskii J. Math., 9 (2001), 37–46 http://ljm.ksu.ru/vol9/kazan.htm | MR | Zbl

[14] Kazantsev A. V., “Bifurkatsii kornei uravneniya Gakhova s levnerovskoi levoi chastyu”, Izv. vuzov. Matem., 1993, no. 6, 69–73 | MR | Zbl

[15] Kinder M. I., “O chisle reshenii uravneniya F. D. Gakhova v sluchae mnogosvyaznoi oblasti”, Izv. vuzov. Matem., 1984, no. 8, 69–72 | MR | Zbl

[16] Kinder M. I., “Issledovanie uravneniya F. D. Gakhova v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 22, Kazan. gos. un-t, Kazan, 1985, 104–116 | MR | Zbl

[17] Epstein C. L., “The hyperbolic Gauss map and quasiconformal reflections”, J. Reine Angew. Math., 372 (1986), 96–135 | DOI | MR | Zbl

[18] Avhadiev F. G., Kayumov I. R., “Estimates for Bloch functions and their generalization”, Complex Variables, 29 (1996), 193–201 | DOI | MR | Zbl

[19] Kazantsev A. V., Kinder M. I., “Usloviya edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Programma itog. nauch. konf. KGU za 1985 g., Kazan un-t, Kazan, 1985, 21

[20] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI | MR

[21] Kiselev A. V., Nasyrov S. R., “O strukture mnozhestva kornei uravneniya F. D. Gakhova dlya odnosvyaznoi i mnogosvyaznoi oblastei”, Trudy seminara po kraevym zadacham, 24, Kazan. gos. un-t, Kazan, 1990, 105–115 | MR

[22] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972, 279 pp. | MR | Zbl

[23] Plessner A. I., “Über das Verhalten analytischer Funktionen am Rande ihres Definitionsbereichs”, J. Reine Angew. Math., 158 (1927), 219–227 | DOI | Zbl

[24] Nasyrov S. R., Khokhlov Yu. E., “Edinstvennost resheniya vneshnei obratnoi kraevoi zadachi v klasse spiraleobraznykh oblastei”, Izv. vuzov. Matem., 1984, no. 8, 24–27 | MR | Zbl

[25] Avkhadiev F. G., “Ob usloviyakh odnolistnosti analiticheskikh funktsii”, Izv. vuzov. Matem., 1970, no. 11, 3–13 | MR | Zbl

[26] Pommerenke Ch., Boundary behavior of conformal maps, Springer-Verlag, Berlin–Heidelberg, 1992, 300 pp. | MR | Zbl

[27] Bakelman I. Ya., Verner A. L., Kantor B. E., Vvedenie v differentsialnuyu geometriyu “v tselom”, Nauka, M., 1973, 440 pp. | MR | Zbl

[28] Kazantsev A. V., “Giperbolicheskie proizvodnye s predshvartsianami iz prostranstva Blokha”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 135–144 | MR | Zbl

[29] Behnke H., Peschl E., “Zur theorie der Funktionen mehrerer komplexer Veränderlichen. Konvexität in bezug auf analytische Ebenen im kleinen und grossen”, Math. Ann., 111:2 (1935), 158–177 | DOI | MR | Zbl

[30] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1985, 464 pp. | MR

[31] Chuaqui M., “A unified approach to univalence criteria in the unit disc”, Proc. Amer. Math. Soc., 123:2 (1995), 441–453 | DOI | MR | Zbl

[32] Pommerenke Ch., “Linear-invariante Familien analytischer Funktionen”, Math. Ann., 155:2 (1964), 108–154 | DOI | MR | Zbl

[33] Campbell D. M., “Locally univalent functions with locally univalent derivatives”, Trans. Amer. Math. Soc., 162 (1971), 395–409 | DOI | MR

[34] Aksentev L. A., “Lokalnoe stroenie poverkhnosti vnutrennego konformnogo radiusa dlya ploskoi oblasti”, Izv. vuzov. Matem., 2002, no. 4, 3–12 | MR | Zbl

[35] Kazantsev A. V., “Lineinaya vypuklost oblastei Khartogsa v $\mathbb C^2$ i novye klassy ploskikh diskov s edinstvennym ekstremumom giperbolicheskoi proizvodnoi”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 19, Kazan. matem. o-vo, Kazan, 2003, 113

[36] Kazantsev A. V., “K gipoteze M. I. Kindera”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 23, Kazan. matem. o-vo, Kazan, 2004, 97