@article{UZKU_2008_150_1_a0,
author = {F. M. Ablayev and S. G. Ablaeva},
title = {Superposition {Problem} of {Continuous} {Functions.} {A~Communication} {Approach}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--18},
year = {2008},
volume = {150},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/}
}
TY - JOUR AU - F. M. Ablayev AU - S. G. Ablaeva TI - Superposition Problem of Continuous Functions. A Communication Approach JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2008 SP - 5 EP - 18 VL - 150 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/ LA - ru ID - UZKU_2008_150_1_a0 ER -
%0 Journal Article %A F. M. Ablayev %A S. G. Ablaeva %T Superposition Problem of Continuous Functions. A Communication Approach %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2008 %P 5-18 %V 150 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/ %G ru %F UZKU_2008_150_1_a0
F. M. Ablayev; S. G. Ablaeva. Superposition Problem of Continuous Functions. A Communication Approach. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/
[1] Hilbert D., “Mathematische Probleme”, Nachr. Akad. Wiss. Gottingen, 1900, 253–297 ; Gesammelete Abhandlungen, 3 (1935), 290–329 | Zbl
[2] P. S. Aleksandrov(red.), Problemy Gilberta, Nauka, M., 1969, 240 pp. | MR
[3] Vitushkin A. G., “K trinadtsatoi probleme Gilberta”, Dokl. AN SSSR, 95:4 (1954), 243–250
[4] Kolmogorov A. N., “Otsenki minimalnogo chisla elementov $\varepsilon$-setei v razlichnykh funktsionalnykh klassakh i ikh primenenie k voprosu o predstavimosti funktsii neskolkikh peremennykh superpozitsiyami funktsii menshego chisla peremennykh”, UMN, 10:1 (1955), 192–194 | Zbl
[5] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976, 304 pp. | MR
[6] Marchenkov S. S., “Ob odnom metode analiza superpozitsii nepreryvnykh funktsii”, Problemy kibernetiki, 37 (1980), 5–17 | MR | Zbl
[7] Asarin E. A., “O slozhnosti ravnomernykh priblizhenii nepreryvnykh funktsii”, UMN, 39:3 (1984), 157–170 | MR
[8] Gashkov S. B., Slozhnost priblizhennogo vychisleniya deistvitelnykh chisel, nepreryvnykh funktsii i lineinykh funktsionalov, Avtoref. dis. $\ldots$ d-ra fiz.-matem. nauk, Mosk. gos. un-t, M., 1992
[9] Yao A., “Some Complexity Questions Related to Distributive Computing”, Proc. of the 11th ACM Symposium on the Theory of Computing, 1979, 209–213
[10] Kolmogorov A. N., “Razlichnye podkhody k otsenke trudnosti priblizhennogo zadaniya i vychisleniya funktsii”, Proc. of Internat. Congress of Mathrmaticians (1962), Stockholm, 1963, 352–356 | MR
[11] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR | Zbl
[12] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986, 384 pp. | MR
[13] Timan A. F., Teoriya priblizhenii funktsii deistvitelnogo peremennogo, Nauka, M., 1960, 624 pp.
[14] Arnold V. I., “O funktsiyakh trekh peremennykh”, Dokl. AN SSSR, 114:4 (1957), 679–681 | MR
[15] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, Dokl. AN SSSR, 114:5 (1957), 953–956 | MR
[16] Lorentz G., “Metric Entropy, Widths and Superpositions Functions”, Amer. Math. Monthly, 69:6 (1962), 469–485 | DOI | MR | Zbl