Superposition Problem of Continuous Functions. A Communication Approach
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 5-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              In function theory the superposition problem is the problem of representing a continuous function $f(x_1,\dots,x_k)$ in $k$ variables as a composition of “simpler” functions. This problem stems from Hilbert's thirteenth problem. In computer science, good formalization for the notion of function composition is a formula. The article considers real-valued continuous functions in $k$ variables in the cube $[0,1]^k$ from the class $\mathcal H^k_{\omega_p}$ with a special modulus of continuity $\omega_p$ defined in the article. $\mathcal H^k_{\omega_p}$ is a superset of Lipschitz' class of functions. An explicit function $f\in\mathcal H^k_{\omega_p}$ is presented, which is hard in the sense that it cannot be represented in the following way as a formula: zero level (input) gates associated with variables $\{x_1,\dots,x_k\}$ (different input gates can be associated with the same variable $x_i\in\{x_1,\dots,x_k\}$), on the first level of the formula, arbitrary $t$ variable functions from $\mathcal H^t_{\omega_p}$ for $t$ are allowed, while the second (output) level may compute any Lipschitz' function. We apply communication complexity for constructing such a hard explicit function. Remarkably, one can show the existence of such a function using the “non constructive” proof method known in the function theory as Kolmogorov's entropy method.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
superposition problem of continuous functions, Lipschitz function, Dini function, discrete approximation of continuous functions, communication complexity.
                    
                  
                
                
                @article{UZKU_2008_150_1_a0,
     author = {F. M. Ablayev and S. G. Ablaeva},
     title = {Superposition {Problem} of {Continuous} {Functions.} {A~Communication} {Approach}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/}
}
                      
                      
                    TY - JOUR AU - F. M. Ablayev AU - S. G. Ablaeva TI - Superposition Problem of Continuous Functions. A Communication Approach JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2008 SP - 5 EP - 18 VL - 150 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/ LA - ru ID - UZKU_2008_150_1_a0 ER -
%0 Journal Article %A F. M. Ablayev %A S. G. Ablaeva %T Superposition Problem of Continuous Functions. A Communication Approach %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2008 %P 5-18 %V 150 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/ %G ru %F UZKU_2008_150_1_a0
F. M. Ablayev; S. G. Ablaeva. Superposition Problem of Continuous Functions. A Communication Approach. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/
