Superposition Problem of Continuous Functions. A Communication Approach
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 5-18

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

In function theory the superposition problem is the problem of representing a continuous function $f(x_1,\dots,x_k)$ in $k$ variables as a composition of “simpler” functions. This problem stems from Hilbert's thirteenth problem. In computer science, good formalization for the notion of function composition is a formula. The article considers real-valued continuous functions in $k$ variables in the cube $[0,1]^k$ from the class $\mathcal H^k_{\omega_p}$ with a special modulus of continuity $\omega_p$ defined in the article. $\mathcal H^k_{\omega_p}$ is a superset of Lipschitz' class of functions. An explicit function $f\in\mathcal H^k_{\omega_p}$ is presented, which is hard in the sense that it cannot be represented in the following way as a formula: zero level (input) gates associated with variables $\{x_1,\dots,x_k\}$ (different input gates can be associated with the same variable $x_i\in\{x_1,\dots,x_k\}$), on the first level of the formula, arbitrary $t$ variable functions from $\mathcal H^t_{\omega_p}$ for $t$ are allowed, while the second (output) level may compute any Lipschitz' function. We apply communication complexity for constructing such a hard explicit function. Remarkably, one can show the existence of such a function using the “non constructive” proof method known in the function theory as Kolmogorov's entropy method.
Keywords: superposition problem of continuous functions, Lipschitz function, Dini function, discrete approximation of continuous functions, communication complexity.
@article{UZKU_2008_150_1_a0,
     author = {F. M. Ablayev and S. G. Ablaeva},
     title = {Superposition {Problem} of {Continuous} {Functions.} {A~Communication} {Approach}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/}
}
TY  - JOUR
AU  - F. M. Ablayev
AU  - S. G. Ablaeva
TI  - Superposition Problem of Continuous Functions. A Communication Approach
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 5
EP  - 18
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/
LA  - ru
ID  - UZKU_2008_150_1_a0
ER  - 
%0 Journal Article
%A F. M. Ablayev
%A S. G. Ablaeva
%T Superposition Problem of Continuous Functions. A Communication Approach
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 5-18
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/
%G ru
%F UZKU_2008_150_1_a0
F. M. Ablayev; S. G. Ablaeva. Superposition Problem of Continuous Functions. A Communication Approach. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a0/