On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 90-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper the convergence of the iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator in Hilbert space is investigated. The functional occurring in this variational inequality is a sum of several functionals. Each of these functionals is a superposition of lower semi-continuous convex proper functional and a linear continuous operator. Such variational inequalities arise, in particular, during mathematical modeling of stationary problems of filtration of a non-compressible fluid follows the nonlinear multi-valued anisotropic filtration law with limiting gradient.
@article{UZKU_2007_149_4_a6,
     author = {I. N. Ismagilov and I. B. Badriev},
     title = {On the convergence of iterative method for solving a~variational inequality of the second kind with inversely strongly monotone operator},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {90--100},
     year = {2007},
     volume = {149},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/}
}
TY  - JOUR
AU  - I. N. Ismagilov
AU  - I. B. Badriev
TI  - On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2007
SP  - 90
EP  - 100
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/
LA  - ru
ID  - UZKU_2007_149_4_a6
ER  - 
%0 Journal Article
%A I. N. Ismagilov
%A I. B. Badriev
%T On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2007
%P 90-100
%V 149
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/
%G ru
%F UZKU_2007_149_4_a6
I. N. Ismagilov; I. B. Badriev. On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 90-100. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/

[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp. | MR

[2] Badriev I. B., Ismagilov I. N., “Issledovanie nekotorykh nelineinykh kraevykh zadach s vyrozhdeniem po gradientu”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy 6-go Vseros. seminara, Kazan. gos. un-t, Kazan, 2005, 50–53

[3] Badriev I. B., Ismagilov I. N., “Matematicheskoe modelirovanie statsionarnykh anizotropnykh zadach teorii filtratsii s mnogoznachnym zakonom”, Vestn. Udmurt. un-ta. Matematika, 2007, no. 1, 3–8

[4] Badriev I. B., Zadvornov O. A., “Iteratsionnye metody resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Izv. vuzov. Matematika, 2003, no. 1, 20–28 | MR | Zbl

[5] Badriev I. B., Zadvornov O. A., “Metody dekompozitsii dlya resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Differents. uravneniya, 39:7 (2003), 888–895 | MR | Zbl

[6] Badriev I. B., Zadvornov O. A., “O skhodimosti iteratsionnogo metoda dvoistvennogo tipa resheniya smeshannykh variatsionnykh neravenstv”, Differents. uravneniya, 42:8 (2006), 1115–1122 | MR | Zbl

[7] Badriev I. B., Zadvornov O. A., Ismagilov L. N., “Primenenie metoda dekompozitsii dlya chislennogo resheniya nekotorykh nelineinykh statsionarnykh zadach teorii filtratsii”, Issled. po prikl. matem. i inform., 24, Kazan. gos. un-t, Kazan, 2003, 12–24

[8] Browder F. E., Petrushin W. V., “The solution by iteration of nonlinear functional equations in Banach spaces”, Bull. American. Math. Soc., 72 (1996), 571–575 | DOI | MR

[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[10] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR