On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 90-100
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
In the paper the convergence of the iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator in Hilbert space is investigated. The functional occurring in this variational inequality is a sum of several functionals. Each of these functionals is a superposition of lower semi-continuous convex proper functional and a linear continuous operator. Such variational inequalities arise, in particular, during mathematical modeling of stationary problems of filtration of a non-compressible fluid follows the nonlinear multi-valued anisotropic filtration law with limiting gradient.
@article{UZKU_2007_149_4_a6,
author = {I. N. Ismagilov and I. B. Badriev},
title = {On the convergence of iterative method for solving a~variational inequality of the second kind with inversely strongly monotone operator},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {90--100},
publisher = {mathdoc},
volume = {149},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/}
}
TY - JOUR AU - I. N. Ismagilov AU - I. B. Badriev TI - On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2007 SP - 90 EP - 100 VL - 149 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/ LA - ru ID - UZKU_2007_149_4_a6 ER -
%0 Journal Article %A I. N. Ismagilov %A I. B. Badriev %T On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2007 %P 90-100 %V 149 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/ %G ru %F UZKU_2007_149_4_a6
I. N. Ismagilov; I. B. Badriev. On the convergence of iterative method for solving a variational inequality of the second kind with inversely strongly monotone operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 90-100. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a6/