Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 146-172

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

An initial-boundary value problem is considered for a quasilinear singularly perturbed parabolic convection-diffusion equation. For such a problem, a solution of a classical difference scheme on uniform grid converges at the rate $\mathcal O((\varepsilon+N^{-1})^{-1}N^{-1}+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of nodes in the meshes in $x$ and $t$ respectively; the scheme converges only under the condition $N^{-1}\ll\varepsilon$. In the present paper, nonlinear and linearized finite difference schemes are constructed on a priori sequentially adapted grids, and their convergence is studied. The construction of the schemes is carried out on the basis of a majorant to the singular component of the discrete solution on uniform grids that allows us to find a priori subdomains where the computed solution requires a further improvement. Such subdomain is defined by the perturbation parameter $\varepsilon$, the step-size of a uniform mesh in $x$, and also by the required accuracy of the grid solution and the prescribed number $K$ of iterations to refine the solution. The advantage of this approach consists in the uniform meshes used. The error of the discrete solution depends weakly on the parameter $\varepsilon$. The schemes that are constructed in the iterative process converge almost $\varepsilon$-uniformly, namely, under the condition $N^{-1}\ll\varepsilon^{\nu}$, where the value $\nu=\nu(K)$ can be chosen arbitrarily small for sufficiently large $K$.
@article{UZKU_2007_149_4_a11,
     author = {G. I. Shishkin},
     title = {Grid approximation of a~singularly perturbed quasilinear parabolic convection-diffusion equation on a~priori adapted meshes},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {146--172},
     publisher = {mathdoc},
     volume = {149},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2007
SP  - 146
EP  - 172
VL  - 149
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/
LA  - ru
ID  - UZKU_2007_149_4_a11
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2007
%P 146-172
%V 149
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/
%G ru
%F UZKU_2007_149_4_a11
G. I. Shishkin. Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 146-172. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/