Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 146-172
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
An initial-boundary value problem is considered for a quasilinear singularly perturbed parabolic convection-diffusion equation. For such a problem, a solution of a classical difference scheme on uniform grid converges at the rate $\mathcal O((\varepsilon+N^{-1})^{-1}N^{-1}+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of nodes in the meshes in $x$ and $t$ respectively; the scheme converges only under the condition $N^{-1}\ll\varepsilon$. In the present paper, nonlinear and linearized finite difference schemes are constructed on a priori sequentially adapted grids, and their convergence is studied. The construction of the schemes is carried out on the basis of a majorant to the singular component of the discrete solution on uniform grids that allows us to find a priori subdomains where the computed solution requires a further improvement. Such subdomain is defined by the perturbation parameter $\varepsilon$, the step-size of a uniform mesh in $x$, and also by the required accuracy of the grid solution and the prescribed number $K$ of iterations to refine the solution. The advantage of this approach consists in the uniform meshes used. The error of the discrete solution depends weakly on the parameter $\varepsilon$. The schemes that are constructed in the iterative process converge almost $\varepsilon$-uniformly, namely, under the condition $N^{-1}\ll\varepsilon^{\nu}$, where the value $\nu=\nu(K)$ can be chosen arbitrarily small for sufficiently large $K$.
@article{UZKU_2007_149_4_a11,
author = {G. I. Shishkin},
title = {Grid approximation of a~singularly perturbed quasilinear parabolic convection-diffusion equation on a~priori adapted meshes},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {146--172},
publisher = {mathdoc},
volume = {149},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/}
}
TY - JOUR AU - G. I. Shishkin TI - Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2007 SP - 146 EP - 172 VL - 149 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/ LA - ru ID - UZKU_2007_149_4_a11 ER -
%0 Journal Article %A G. I. Shishkin %T Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2007 %P 146-172 %V 149 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/ %G ru %F UZKU_2007_149_4_a11
G. I. Shishkin. Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 146-172. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a11/