@article{UZKU_2007_149_3_a7,
author = {I. I. Nikitina and O. V. Bondar' and R. R. Khaziakhmetova and F. K. Alimova and T. I. Abdullin},
title = {Electrochemical {DNA} sensors based on carbon nanotubes: {A~review.}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {115--129},
year = {2007},
volume = {149},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a7/}
}
TY - JOUR AU - I. I. Nikitina AU - O. V. Bondar' AU - R. R. Khaziakhmetova AU - F. K. Alimova AU - T. I. Abdullin TI - Electrochemical DNA sensors based on carbon nanotubes: A review. JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2007 SP - 115 EP - 129 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a7/ LA - ru ID - UZKU_2007_149_3_a7 ER -
%0 Journal Article %A I. I. Nikitina %A O. V. Bondar' %A R. R. Khaziakhmetova %A F. K. Alimova %A T. I. Abdullin %T Electrochemical DNA sensors based on carbon nanotubes: A review. %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2007 %P 115-129 %V 149 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a7/ %G ru %F UZKU_2007_149_3_a7
I. I. Nikitina; O. V. Bondar'; R. R. Khaziakhmetova; F. K. Alimova; T. I. Abdullin. Electrochemical DNA sensors based on carbon nanotubes: A review.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 3, pp. 115-129. http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a7/
[1] Salata O. V., “Applications of nanoparticles in biology and medicine”, J. Nanobiotechnol., 2 (2004), 3–8 | DOI
[2] Zanello L. P., Zhao B., Hu H., Haddon R. C., “Bone cell proliferation on carbon nanotubes”, Nano Lett., 6 (2006), 562–567 | DOI
[3] Abarrategi A., Gutierrez M.C., Moreno-Vicente C., Hortiguela M. J., Ramos V., Lopez-Lacomba J. L., Ferrer M. L., Monte F., “Multiwall carbon nanotube scaffolds for tissue engineering purposes”, Biomaterials, 29 (2008), 94–102 | DOI
[4] Harrison B. S., Atala A., “Carbon nanotube applications for tissue engineering”, Biomaterials, 28 (2007), 344–353 | DOI
[5] Pantarotto D., Partidos C. D., Hoebeke J., Brown F., Kramer E., Briand J.-P., Muller S., Prato M., Bianco A., “Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses”, Chem. Biol., 10 (2003), 961–966 | DOI
[6] Bianco A., Hoebeke J., Godefroy S., Chaloin O., Pantarotto D., Briand J.-P., Muller S., Prato M., Partidos C. D., “Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties”, J. Am. Chem. Soc., 127 (2005), 58–59 | DOI
[7] Wang J., “Nanomaterial-based electrochemical biosensors”, Analyst., 130 (2005), 421–426 | DOI
[8] Merkoci A., Pumera M., Llopis X., Perez B., Valle M., Alegret S., “New materials for electrochemical sensing. VI: Carbon nanotubes”, Trends Anal. Chem., 24 (2005), 826–838 | DOI
[9] Balasubramanian K., Burghard M., “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 385 (2006), 452–468 | DOI
[10] Pumera M., Sanchez S., Ichinose I., Tang J., “Electrochemical nanobiosensors”, Sens. Actuators (B), 123 (2007), 195–1205
[11] Wang J., “Survey and summary. From DNA biosensors to gene chips”, Nucleic Acids Res., 28 (2000), 3011–3016 | DOI
[12] Kerman K., Kobayashi M., Tamiya E., “Recent trends in electrochemical DNA biosensor technology”, Meas. Sci. Technol., 15 (2004), R1–R11 | DOI
[13] Lucarelli F., Marrazza G., Turner A.P.F., Mascini M., “Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors”, Biosens. Bioelectron., 19 (2004), 515–530 | DOI
[14] Gooding J. J., “Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing”, Electrochim. Acta, 50 (2005), 3049–3060 | DOI
[15] Paradise M., Goswami T., “Carbon nanotubes – Production and industrial applications”, Mater. Design., 28 (2007), 1477–1489 | DOI
[16] Niyogi S., Hamon M. A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M. E., Haddon R. C., “Chemistry of single-walled carbon nanotubes”, Acc. Chem. Res., 35 (2002), 1105–1113 | DOI
[17] Grobert N., “Carbon nanotubes – becoming clean”, Nanotoday, 10 (2007), 28–35
[18] Harris P. J. F., “Solid state growth mechanisms for carbon nanotubes”, Carbon., 45 (2007), 229–239 | DOI
[19] Eletskii A. V., “Uglerodnye nanotrubki”, Usp. fiz. nauk, 167:9 (1997), 945–972 | DOI
[20] Eletskii A. V., “Sorbtsionnye svoistva uglerodnykh nanotrubok”, Usp. fiz. nauk, 174:11 (2004), 945–972
[21] Valentini F., Amine A., Orlanducci S., Terranova M. L., Palleschi G., “Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes”, Anal. Chem., 75 (2003), 5413–5421 | DOI
[22] Wang J., Musameh M., “Carbon nanotube/teflon composite electrochemical sensors and biosensors”, Anal. Chem., 75 (2003), 2075–2079 | DOI
[23] Rubianes M. D., Rivas G. A., “Carbon nanotubes paste electrode”, Electrochem. Commun., 5 (2003), 689–694 | DOI
[24] Liu J., Rinzler A. G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T., Smalley R. E., “Fullerene pipes”, Science, 280 (1998), 1253–1256 | DOI
[25] Raymundo-Pinero E., Cacciaguerra T., Simon P., Beguin F., “A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes”, Chem. Phys. Lett., 412 (2005), 184–189 | DOI
[26] Nikitina I. I., Abdullin T. I., “Elektrody, modifitsirovannye uglerodnymi nanotrubkami, dlya detektirovaniya biomolekul”, Materialy VI nauch. konf. molodykh uchenykh, aspirantov i studentov NOTs KGU “Materialy i tekhnologii XXI veka”, Kazan, 2006, 85
[27] Abdullin T. I., Budnikov G. K., Evtugyn G. A., Konovalova O. A., Salakhov M. Kh., “Voltammetric behavior of guanine, guanosine triphosphate and DNA on carbon nanotubes modified electrodes”, Abstr. of Internat. Congress on Analytical Sciences “ICAS-2006”, M., 2006, 620–621
[28] Abdullin T. I., Nikitina I. I., Bondar O. V., Ishmukhametova D. G., Konovalova O. A., Salakhov M. Kh., “Konstruirovanie i testirovanie elektrodov na osnove mnogostennykh uglerodnykh nanotrubok”, Ros. nanotekhnologii, 2:7–8 (2007), 156–160
[29] Abdullin T. I., Nikitina I. I., Ishmukhametova D. G., Budnikov G. K., Konovalova O. A., Salakhov M. Kh., “Elektrody, modifitsirovannye uglerodnymi nanotrubkami, dlya elektrokhimicheskikh DNK-sensorov”, Zhurn. analit. khimii, 62:6 (2007), 667–671
[30] Tkac J., Ruzgas T., “Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection”, Electrochem. Commun., 8 (2006), 899–903 | DOI
[31] He P., Bayachou M., “Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles”, Langmuir, 21 (2005), 6086–6092 | DOI
[32] Rubianes M. D., Rivas G. A., “Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors”, Electrochem. Commun., 9 (2007), 480–484 | DOI
[33] Li J., Liu Q., Liu Y., Liu S., Yao S., “DNA biosensor based on chitosan film doped with carbon nanotubes”, Anal. Biochem., 346 (2005), 107–114 | DOI
[34] Moulton S. E., Minett A. I., Murphy R., Ryan K. P., McCarthy D., Coleman J. N., Blau W. J., Wallace G. G., “Biomolecules as selective dispersants for carbon nanotubes”, Carbon, 43 (2005), 1879–1884 | DOI
[35] Koehne J., Li J., Cassell A. M., Chen H., Ye Q., Ng H. T., Han J., Meyyappan M., “The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays”, J. Mater. Chem., 14 (2004), 676–684 | DOI
[36] Li J., Ng H. T., Cassell A., Fan W., Chen H., Ye Q., Koehne J., Han J., Meyyappan M., “Carbon nanotube nanoelectrode array for ultrasensitive DNA detection”, Nano Lett., 3 (2003), 597–602 | DOI
[37] Cai H., Cao X., Jiang Y., He P., Fang Y., “Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection”, Anal. Bioanal. Chem., 375 (2003), 287–293
[38] He P., Dai L., “Aligned carbon nanotube–DNA electrochemical sensors”, Chem. Commun., 3 (2004), 348–349
[39] Wang J., Kawde A.-N., Jan M. R., “Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization”, Biosens. Bioelectron., 20 (2004), 995–1000 | DOI
[40] Wang J., Liu G., Jan M. R., “Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events”, J. Am. Chem. Soc., 126 (2004), 3010–3011 | DOI
[41] Munge B., Liu G., Collins G., Wang J., “Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies”, Anal. Chem., 77 (2005), 4662–4666 | DOI
[42] Koehne J., Chen H., Li J., Cassell A.M., Ye Q., Ng H. T., Han J., Meyyappan M., “Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays”, Nanotechnology, 14 (2003), 1239–1245 | DOI
[43] Rauf S., Gooding J. J., Akhtar K., Ghauri M. A., Rahman M., Anwar M. A., Khalid A. M., “Electrochemical approach of anticancer drugs–DNA interaction”, J. Pharm. Biomed. Anal., 37 (2005), 205–217 | DOI
[44] Armistead P. M., Thorp H. H., “Modification of indium tin oxide electrodes with nucleic acids: Detection of attomole quantities of immobilized DNA by electrocatalysis”, Anal. Chem., 72 (2000), 3764–3770 | DOI
[45] Oliveira-Brett A. M., Piedade J. A. P., Silva L. A., Diculescu V. C., “Voltammetric determination of all DNA nucleotides”, Anal. Biochem., 332 (2004), 321–329 | DOI
[46] Wang Z., Xiao S., Chen Y., “$\beta$-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine”, J. Electroanal. Chem., 589 (2006), 237–242 | DOI
[47] Liu H., Wang G., Chen D., Zhang W., Li C., Fang B., “Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA”, Sens. Actuators (B), 128 (2008), 414–421 | DOI
[48] Pedano M. L., Rivas G. A., “Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes”, Electrochem. Commun., 6 (2004), 10–16 | DOI
[49] Heng L. Y., Chou A., Yu J., Chen Y., Gooding J. J., “Demonstration of the advantages of using bamboo-like nanotubes for electrochemical biosensor applications compared with single walled carbon nanotubes”, Electrochem. Commun., 7 (2005), 1457–1462 | DOI
[50] Erdem A., Papakonstantinou P., Murphy H., “Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes”, Anal. Chem., 78 (2006), 6656–6659 | DOI
[51] Nikitina I. I., Bondar O. V., Khaziakhmetova R. R., Rizvanov A. A., Abdullin T. I., “Carbon nanotubes based direct electrochemical detection of nucleic acids”, Abstr. of the Third Intern. Conf. “Basic Science for Medicine”, Novosibirsk, 2007, 156
[52] Bondar O. V., Nikitina I. I., Khaziakhmetova R. R., Rizvanov A. A., Abdullin T. I., “Otsenka strukturnogo sostoyaniya DNK s pomoschyu elektrokhimicheskikh biosensorov”, Uchen. zap. Kazan. un-ta. Ser. Estestv. nauki, 149, kn. 4 (2007), 106–111
[53] Abdullin T. I., Nikitina I. I., Bondar O. V., “Vyyavlenie depurinizatsii DNK s pomoschyu modifitsirovannogo uglerodnymi nanotrubkami elektroda”, Zhurn. analit. khimii, 63:4 (2008) (to appear)
[54] Bondar O. V., Khaziakhmetova R. R., Abdullin T. I., “Adsorbtsiya purinov i DNK na uglerodnykh nanotrubkakh”, Sb. st. po itogam XIV Vseros. konf. “Struktura i dinamika molekulyarnykh sistem”, Kazan, 2007, 379–382
[55] Abdullin T. I., Adsorbtsiya i okislenie dezoksiribonukleinovykh kislot na elektrodakh, modifitsirovannykh uglerodnymi nanotrubkami, Dis. $\dots$ kand. biol. nauk, Kazan gos. un-t, Kazan, 2007, 142 pp.
[56] Basiuk E. V., Rybak-Akimova E. V., Basiuk V. A., Acosta-Najarro D., Saniger J. M., “Adsorption modification of single-walled carbon nanotubes with tetraazaannulene macrocyclic complexes”, Nano Lett., 2 (2002), 1249–1252 | DOI
[57] Yan Y., Zhang M., Gong K., Su L., Guo Z., Mao L., “Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite”, Chem. Mater., 17 (2005), 3457–3463 | DOI
[58] Rajendra J., Baxendale M., Rap L. G. D., Rodger A., “Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes”, J. Am. Chem. Soc., 126 (2004), 11182–11188 | DOI
[59] Martinis B. S., Bianchi M. L. P., “Methodology for urinary 8-hydroxy-2'-deoxyguanosine analysis by HLPC with electrochemical detection”, Pharmacol. Res., 46 (2002), 129–131 | DOI
[60] Collins A. R., Cadet J., Moller L., Poulsen H. E., Vinae J., “Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells?”, Arch. Biochem. Biophys., 423 (2004), 57–65 | DOI
[61] Brabec V., Koudelka J., “Oxidation of deoxyribonucleic acid at carbon electrodes. The effect of the quality of the deoxyribonucleic acid sample”, Bioelectrochem. Bioenerg., 7 (1980), 793–805 | DOI
[62] Pedano M. L., Rivas G. A., “Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors”, Biosens. Bioelectron., 18 (2003), 269–277 | DOI
[63] Nikitina I. I., Abdullin T. I., “Biosensory na osnove uglerodnykh nanotrubok dlya vyyavleniya povrezhdenii v DNK”, Sb. st. po itogam XIV Vseros. konf. “Struktura i dinamika molekulyarnykh sistem”, Kazan, 2007, 777–780
[64] Lindahl T., Nyberg B., “Rate of depurination of native deoxyribonucleic acid”, Biochemistry, 11 (1972), 3610–3618 | DOI
[65] Sheppard T. L., Ordoukhanian P., Joyce G. F., “A DNA enzyme with N-glycosylase activity”, PNAS, 97 (2000), 7802–7807 | DOI
[66] Henle E. S., Linn S., “Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide”, J. Biol. Chem., 272 (1997), 19095–19098 | DOI
[67] Cadet J., Delatour T., Douki T., Gasparutto D., Pouget J.-P., Ravanat J.-L., Sauvaigo S., “Hydroxyl radicals and DNA base damage”, Mutat. Res., 424 (1999), 9–21 | DOI