Microwave resonance in a system of interacting conducting rings and its applications
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 2, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interaction between standing Sommerfeld microwaves within a system comprising two closely spaced conducting rings gives rise to pronounced resonance phenomena. The behavior of this system depends on the relative arrangement of the receiving and transmitting points. Specifically, it leads to a sharp reduction or enhancement of signal output within a narrow frequency range. Remarkably, this structure can serve dual roles: acting as both a band-stop filter and a band-pass filter, all within the same restricted frequency band.
Keywords: Sommerfeld waves, ring oscillators, resonant transmission, filters
Mots-clés : coupled modes
@article{UZERU_2024_58_2_a3,
     author = {N. G. Margaryan},
     title = {Microwave resonance in a system of interacting conducting rings and its applications},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a3/}
}
TY  - JOUR
AU  - N. G. Margaryan
TI  - Microwave resonance in a system of interacting conducting rings and its applications
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2024
SP  - 66
EP  - 72
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a3/
LA  - en
ID  - UZERU_2024_58_2_a3
ER  - 
%0 Journal Article
%A N. G. Margaryan
%T Microwave resonance in a system of interacting conducting rings and its applications
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2024
%P 66-72
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a3/
%G en
%F UZERU_2024_58_2_a3
N. G. Margaryan. Microwave resonance in a system of interacting conducting rings and its applications. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 2, pp. 66-72. http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a3/

[1] D. Molnar, T. Schaich, et al., “Interaction between Surface Waves on Wire Lines”, Proc. R. Soc. A, 477:3 (2021), 20200795 | DOI | MR

[2] X. Shen, T. Jun Cui, “Planar Plasmonic Metamaterial on a Thin Film with Nearly Zero Thickness”, Appl. Phys. Lett., 102 (2013), 211909 | DOI

[3] W. X. Tang, H. C. Zhang, et al., “Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies”, Adv. Opt. Mater., 7 (2019), 1800421 | DOI

[4] L. Chen, F. Gao, et al., “Editorial: Recent Progress in Surface Electromagnetic Modes”, Front. Phys., 9 (2021) | DOI

[5] G. Goubau, “Single-Conductor Surface-Wave Transmission Lines”, Proc. IRE, 39 (1951), 619–624 | DOI

[6] B. J. Vaughn, D. Peroulis, A. Fisher, “Mid-Range Wireless Power Transfer Based on Goubau Lines”, IEEE/MTT-S International. 2018 (IMS, IEEE) (Microwave Symposium), 2018, 968–971 | DOI

[7] J. Li, Q. Zhang, et al., “Pulse Transmission Performance of Goubau Lines and Spoof Surface Plasmon Polaritons Transmission Lines”, 2020 IEEE Asia-Pacific Microwave Conference (APMC 2020), 2020, 795–797 | DOI

[8] T. Schaich, E. Dinc, et al., “Advanced Modeling of Surface Waves on Twisted Pair Cables: Surface Wave Stopbands”, IEEE Trans. Microw. Theory Tech., 70 (2022), 2541–2552 | DOI

[9] B. Vaughn, D. Peroulis, “An Updated Applied Formulation for the Goubau Transmission Line”, J. Appl. Phys., 126 (2019), 194902 | DOI

[10] Y. Smirnov, E. Smolkin, Y. Shestopalov, “Surface Waves in a Goubau Line Filled with Nonlinear Anisotropic Inhomogeneous Medium”, Appl. Anal., 101 (2022), 6172–6190 | DOI | MR

[11] S. Ge, Q. Zhang, et al., “Analysis of Asymmetrically Corrugated Goubau-Line Antenna for Endfire Radiation”, IEEE Trans. Antennas Propag., 67 (2019), 7133–7138 | DOI

[12] S. Laurette, A. Treizebre, B. Bocquet, “Corrugated Goubau Lines to Slow Down and Confine $THz$ Waves”, IEEE Trans. Terahertz Sci. Technol., 2 (2012), 340–344 | DOI

[13] T. Akalin, A. Treizebre, B. Bocquet, “Single-Wire Transmission Lines at Terahertz Frequencies”, IEEE Trans. Microw. Theory Tech., 54 (2006), 2762–2767 | DOI

[14] M. Wagih, “Broadband Low-Loss On-Body UHF to Millimeter-Wave Surface Wave Links Using Flexible Textile Single Wire Transmission Lines”, IEEE Open J. Antennas Propag., 3 (2022), 101–111 | DOI

[15] W.-C. Chen, J. J. Mock, et al., “Controlling Gigahertz and Terahertz Surface Electromagnetic Waves with Metamaterial Resonators”, Phys. Rev. X., 3 (2022), 021016, 101–111 | DOI

[16] A. K. Horestani, W. Withayachumnankul, et al., “Metamaterial-Inspired Bandpass Filters for Terahertz Surface Waves on Goubau Lines”, IEEE Trans. Terahertz Sci. Technol., 3 (2013), 851–858 | DOI

[17] S. A. Maier, S. R. Andrews, et al., “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires”, Phys. Rev. Lett., 97 (2006), 176805 | DOI

[18] Y. Xu, C. Nerguizian, R. G. Bosisio, “Wideband Planar Goubau Line Integrated Circuit Components at Millimetre Waves”, IET Microwaves, Antennas Propag., 5 (2011), 882 | DOI

[19] X.-L. Tang, Q. Zhang, et al., “Continuous Beam Steering through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas”, Sci. Rep., 7 (2017), 11685 | DOI

[20] L. W. Liu, A. Kandwal, et al., “Non-Invasive Blood Glucose Monitoring Using a Curved Goubau Line”, Electronics, 8 (2019), 662 | DOI

[21] A. Boutejdar, A. Omar, “A Miniature $5.2~GHz$ Bandstop Microstrip Filter Using Multilayer-Technique and Coupled Octagonal Defected Ground Structure”, Microwave and Optical Technology Letters, 51 (2009), 2810–2813 | DOI