Probabilistic identities in Burnside groups of exponent $3$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 2, pp. 37-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Burnside groups $B(m, n)$ are relatively free groups that are factor groups of the absolutely free group $F_m$ of rank $m$ by its subgroup, generated by $n$-th degrees of all the elements. They are the largest groups of fixed rank that have the exponent equal to $n$. In this work we compute the commuting probability for free Burnside groups $B(m, 3)$ of exponent 3 and rank $m \ge 1$.
Keywords: probabilistic identities, Burnside groups, relatively free groups
@article{UZERU_2024_58_2_a0,
     author = {A. R. Fahradyan},
     title = {Probabilistic  identities  in  {Burnside}  groups of exponent $3$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a0/}
}
TY  - JOUR
AU  - A. R. Fahradyan
TI  - Probabilistic  identities  in  Burnside  groups of exponent $3$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2024
SP  - 37
EP  - 46
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a0/
LA  - en
ID  - UZERU_2024_58_2_a0
ER  - 
%0 Journal Article
%A A. R. Fahradyan
%T Probabilistic  identities  in  Burnside  groups of exponent $3$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2024
%P 37-46
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a0/
%G en
%F UZERU_2024_58_2_a0
A. R. Fahradyan. Probabilistic  identities  in  Burnside  groups of exponent $3$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 58 (2024) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/UZERU_2024_58_2_a0/

[1] G. Amir, G. Blachar et al., Probabilistic Laws on Infinite Groups, 2023 | DOI

[2] V. S. Atabekyan, A. A. Bayramyan, “Probabilistic Identities in $n$-Torsion Groups”, Journal of Contemporary Mathematical Analysis, 59 (2024) | DOI

[3] W. H. Gustafson, “What is the Probability That Two Group Elements Commute?”, Amer. Math. Monthly, 80:3 (1973), 1031–1034 http://www.jstor.org/stable/2318778 | DOI | MR

[4] M. Hall, The Group Theory, ISBN 978-0821819678, 1999

[5] V. S. Atabekyan, H. T. Aslanyan, H. A. Grigorian, A. E. Grigoryan, “Analogues of Nielsen’s and Magnus’s Theorems for free Burnside Groups of Period $3$”, Proceedings of the YSU. Physical and Mathematical Scienes, 51:3 (2017), 217–223 | DOI | MR | Zbl