Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2023_57_2_a1, author = {M. A. Khachaturyan}, title = {On correct solvability of {Dirichlet} problem in a half-space for regular equations with non-homogeneous boundary conditions}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {44--50}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/} }
TY - JOUR AU - M. A. Khachaturyan TI - On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2023 SP - 44 EP - 50 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/ LA - en ID - UZERU_2023_57_2_a1 ER -
%0 Journal Article %A M. A. Khachaturyan %T On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2023 %P 44-50 %V 57 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/ %G en %F UZERU_2023_57_2_a1
M. A. Khachaturyan. On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 44-50. http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/
[1] G. A. Karapetyan, H. A. Petrosyan, “Correct Solvability of the Dirichlet Problem in the Half-space for Regular Hypoelliptic Equations”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 54 (2019), 45–69 | DOI | MR | Zbl
[2] H. G. Ghazaryan, “The Newton Polyhedron, Spaces of Differentiable Functions and General Theory of Differential Equations”, Armenian Journal of Mathematics, 9:2 (2017), 102–145 | MR | Zbl
[3] G. A. Karapetyan, “Integral Representation of Functions and Embedding Theorems for Multianisotropic Spaces on a Plane with One Vertex of Anisotropicity”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences), 51:6 (2016), 23–42 | DOI | MR | Zbl
[4] G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces for the three-dimensional case”, Eurasian Math. J., 7:4 (2016), 19–39 | DOI | MR
[5] G. A. Karapetyan, M. K. Arakelyan, “Estimation of Multianisotropic Kernels and their Application to the Embedding Theorems”, Transactions of A. Razmadze Mathematical Institute, 171 (2017), 48–56 | DOI | MR | Zbl
[6] G. A. Karapetyan, “Integral Representations of Functions and Embedding Theorems for $n$-Dimensional Multianisotropic Spaces with One Anisotropy Vertex”, Siberian Mathematical Journal, 58:3 (2017), 445–460 | DOI | MR | Zbl
[7] G. A. Karapetyan, H. A. Petrosyan, “Embedding theorems for Multianisotropic Spaces with Two Vertices of Aanisotropicity”, Proc. YSU. Phys. and Math. Sci., 51:1 (2017), 29–37 | DOI | MR | Zbl
[8] G. A. Karapetyan, “An Integral Representation and Embedding Theorems in the Plane for Multianisotropic Spaces”, J. Contemp. Math. Anal., 52:6 (2017), 261–269 | DOI | MR
[9] G. A. Karapetyan, M. K. Arakelyan, “Embedding Theorems for General Multianisotropic Spaces”, Math. Notes, 104:3 (2018), 422–438 | DOI | MR | Zbl
[10] M. A. Khachaturyan, A. R. Hakobyan, “On Traces of Functions from Multianisotropic Sobolev Spaces”, Vestnik RAU. Phys.-Math. Est. Nauki, 1 (2021), 56–77 (in Russian)