On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 44-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the following Dirichlet problem with non-homogeneous boundary conditions in a multianisotropic Sobolev space $W_2^{\mathfrak{M}}(R^2 \times R_+)$ $$ \begin{cases} P(D_x, D_{x_3}) u = f(x, x_3), \quad x_3 > 0, \quad x \in R^2, \\ D_{x_3}^s u \big\rvert_{x_3 = 0} = \varphi_s(x),\quad s = 0, \dots, m-1. \end{cases} $$ It is assumed that $P(D_x, D_{x_3})$ is a multianisotopic regular operator of a special form with a characteristic polyhedron $\mathfrak{M}$. We prove unique solvability of the problem in the space $W_2^{\mathfrak{M}}(R^2 \times R_+)$, assuming additionally, that $f(x, x_3)$ belongs to $L_2(R^2 \times R^+)$ and has a compact support, boundary functions $\varphi_s$ belong to special Sobolev spaces of fractional order and have compact supports.
Keywords: regular operator, characteristic polyhedron, multianisotropic Sobolev space.
@article{UZERU_2023_57_2_a1,
     author = {M. A. Khachaturyan},
     title = {On correct solvability of {Dirichlet} problem in a half-space for regular equations with non-homogeneous boundary conditions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {44--50},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/}
}
TY  - JOUR
AU  - M. A. Khachaturyan
TI  - On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2023
SP  - 44
EP  - 50
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/
LA  - en
ID  - UZERU_2023_57_2_a1
ER  - 
%0 Journal Article
%A M. A. Khachaturyan
%T On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2023
%P 44-50
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/
%G en
%F UZERU_2023_57_2_a1
M. A. Khachaturyan. On correct solvability of Dirichlet problem in a half-space for regular equations with non-homogeneous boundary conditions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 2, pp. 44-50. http://geodesic.mathdoc.fr/item/UZERU_2023_57_2_a1/

[1] G. A. Karapetyan, H. A. Petrosyan, “Correct Solvability of the Dirichlet Problem in the Half-space for Regular Hypoelliptic Equations”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 54 (2019), 45–69 | DOI | MR | Zbl

[2] H. G. Ghazaryan, “The Newton Polyhedron, Spaces of Differentiable Functions and General Theory of Differential Equations”, Armenian Journal of Mathematics, 9:2 (2017), 102–145 | MR | Zbl

[3] G. A. Karapetyan, “Integral Representation of Functions and Embedding Theorems for Multianisotropic Spaces on a Plane with One Vertex of Anisotropicity”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences), 51:6 (2016), 23–42 | DOI | MR | Zbl

[4] G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces for the three-dimensional case”, Eurasian Math. J., 7:4 (2016), 19–39 | DOI | MR

[5] G. A. Karapetyan, M. K. Arakelyan, “Estimation of Multianisotropic Kernels and their Application to the Embedding Theorems”, Transactions of A. Razmadze Mathematical Institute, 171 (2017), 48–56 | DOI | MR | Zbl

[6] G. A. Karapetyan, “Integral Representations of Functions and Embedding Theorems for $n$-Dimensional Multianisotropic Spaces with One Anisotropy Vertex”, Siberian Mathematical Journal, 58:3 (2017), 445–460 | DOI | MR | Zbl

[7] G. A. Karapetyan, H. A. Petrosyan, “Embedding theorems for Multianisotropic Spaces with Two Vertices of Aanisotropicity”, Proc. YSU. Phys. and Math. Sci., 51:1 (2017), 29–37 | DOI | MR | Zbl

[8] G. A. Karapetyan, “An Integral Representation and Embedding Theorems in the Plane for Multianisotropic Spaces”, J. Contemp. Math. Anal., 52:6 (2017), 261–269 | DOI | MR

[9] G. A. Karapetyan, M. K. Arakelyan, “Embedding Theorems for General Multianisotropic Spaces”, Math. Notes, 104:3 (2018), 422–438 | DOI | MR | Zbl

[10] M. A. Khachaturyan, A. R. Hakobyan, “On Traces of Functions from Multianisotropic Sobolev Spaces”, Vestnik RAU. Phys.-Math. Est. Nauki, 1 (2021), 56–77 (in Russian)