Linearity of $n$-ary associative algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 1, pp. 9-22
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper $n$-ary regular division associative algebras are discussed. It is shown that every operation in $n$-ary regular division associative algebra will be endo-linearly represented over the same binary group. Schaufler like theorem will be proved for those algebras.
Keywords:
$\forall\exists(\forall)$-identities, regular division groupoids, $n$-ary groupoids, quasiendomorphisms, Schaufler theorem.
@article{UZERU_2023_57_1_a1,
author = {D. N. Harutyunyan},
title = {Linearity of $n$-ary associative algebras},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {9--22},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a1/}
}
TY - JOUR AU - D. N. Harutyunyan TI - Linearity of $n$-ary associative algebras JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2023 SP - 9 EP - 22 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a1/ LA - en ID - UZERU_2023_57_1_a1 ER -
D. N. Harutyunyan. Linearity of $n$-ary associative algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 57 (2023) no. 1, pp. 9-22. http://geodesic.mathdoc.fr/item/UZERU_2023_57_1_a1/