Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 3, pp. 116-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The intrasubband and intersubband absorption of light by free charge carriers in a semiconductor nanowire upon scattering by polar optical phonons mediated by Rashba and Dresselhaus spin-orbit interactions has been studied. The dependence of the absorption coefficient on the energy of the incident photon is investigated by counting the transitions between different conduction subbands. It is shown that the spin-orbit interaction leads to an increase in the coefficient of intrasubband and intersubband absorption of light, with the peaks of the absorption coefficient being determined by the energies of the absorbed photon and the absorbed or emitted phonon. In this case, the difference between the values of the absorption coefficients with or without spin-orbit interaction has maximum in the range of the local minimum of the absorption coefficient obtained by ignoring the spin-orbit coupling.
Keywords: semiconductor nanowire, optical absorption, spin-orbit coupling, polar optical phonon.
@article{UZERU_2022_56_3_a3,
     author = {T. K. Ghukasyan},
     title = {Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {116--127},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/}
}
TY  - JOUR
AU  - T. K. Ghukasyan
TI  - Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2022
SP  - 116
EP  - 127
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/
LA  - en
ID  - UZERU_2022_56_3_a3
ER  - 
%0 Journal Article
%A T. K. Ghukasyan
%T Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2022
%P 116-127
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/
%G en
%F UZERU_2022_56_3_a3
T. K. Ghukasyan. Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 3, pp. 116-127. http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/

[1] K. S. Bhargavi, S. Patil, S. S. Kubakaddi, J. Appl. Phys., 118 (2015), 044308 | DOI

[2] W. P. Dumke, “Quantum Theory of Free Carrier Absorption.”, Phys. Rev., 124 (1961), 1813–817 | DOI

[3] K. Seeger, Semiconductor Physics, Springer-Verlag, Berlin–Heidelberg, 2004, 538 pp. | DOI

[4] H. N. Spector, “Free-carrier Absorption in Quasi-two-dimensional Semiconducting Structures”, Phys. Rev. B, 983, 28 | DOI

[5] S. S. Kubakaddi, B. G. Mulimani, “Free-carrier Absorption in Semiconducting Quantum Well Wires”, J. Phys. C: Solid State Phys., 18 (1985), 6647–6652 | DOI

[6] H. Adamska, H. N. Spector, “Free-carrier Absorption from Electrons in Confined Systems”, J. Appl. Phys., 59 (1986), 619–626 | DOI

[7] C. C. Wu, C. J. Lin, “Free-carrier Absorption in $n$-type Piezoelectric Semiconductor Films”, J. Phys. Condens. Matter, 6 (1994), 10147–10158 | DOI

[8] Y. B. Yu, S. N. Zhu, K. X. Guo, “Electron–phonon Interaction Effect on Optical Absorption in Cylindrical Quantum Wires”, Solid State Commun., 139 (2006), 76–79 | DOI

[9] C. C. Wu, C. J. Lin, “Effect of Electron–phonon Scattering Mechanisms on Free-carrier Absorption in Quasi-one-dimensional Structures”, Physica B: Condens. Matter., 316—317 (2002), 346–349 | DOI

[10] H. Adamska, H. N. Spector, “Free Carrier Absorption in Quantum Well Structures for Polar Optical Phonon Scattering”, J. Appl. Phys., 56 (1984), 1123–1127 | DOI

[11] C. C. Wu, C.-J. Lin, “Free-carrier Absorption in $n$-type Gallium Arsenide Films for Polar Optical Phonon Scattering”, J. Appl. Phys., 79 (1996), 781–785 | DOI

[12] S. S. Kubakaddi, B. G. Mulimani, “Free-carrier Absorption in Quasi-two-dimensional Semiconducting Structures for Nonpolar Optical Phonon Scattering”, J. Appl. Phys., 58 (1985), 3640–3642 | DOI

[13] S. S. Kubakaddi, B. G. Mulimani, “Free-carrier Absorption in Semiconducting Quantum-well Wires for Nonpolar Optical-phonon Scattering”, J. Appl. Phys., 63 (1988), 1799–1801 | DOI

[14] D. Q. Khoa, L. T. T. Phuong, B. D. Hoi, “Nonlinear Absorption Coefficient and Optically Detected Electrophonon Resonance in Cylindrical {GaAs}/{AlAs} Quantum Wires with Different Confined Phonon Models”, Superlattices Microstruct, 103 (2017), 252–261 | DOI

[15] I. Žutić, J. Fabian, S. D. Sarma, “Spintronics: Fundamentals and Applications”, Rev. Mod. Phys., 76 (2004), 323–410 | DOI

[16] E. I. Rashba, Fiz. Tver. Tela (Leningrad), 2 (1960), 1224 (in Russian)

[17] J. Nitta, T. Akazaki, et al., “Gate Control of Spin–orbit Interaction in an Inverted In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As Heterostructure”, Phys. Rev. Lett., 78 (997), 1335–1338 | DOI

[18] D. Grundler, “Large Rashba Splitting in InAs Quantum Wells Due to Electron Wave Function Penetration into the Barrier Layers”, Phys. Rev. Lett., 84 (2000), 6074–6077 | DOI

[19] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba Spin–orbit Coupling Probed by the Weak Antilocalization Analysis in InAlAs/InGaAs/InAlAs Quantum Wells as a Function of Quantum Well Asymmetry”, Phys. Rev. Lett., 89 (2002), 046801 | DOI

[20] S. Zhang, N. Tang, et al., “Generation of Rashba Spin–orbit Coupling in CdSe Nanowire by Ionic Liquid Gate”, Nano Letters, 15 (2015), 1152–1157 | DOI

[21] G. Dresselhaus, “Spin–orbit Coupling Effects in Zinc Blende Structures”, Phys. Rev., 100 (1955), 580–586 | DOI | Zbl

[22] J. Knobbe, T. Schäpers, “Magnetosubbands of Semiconductor Quantum Wires with Rashba Spin–orbit Coupling”, Phys. Rev. B, 71 (2005), 035311 | DOI

[23] L. Serra, D. Sánchez, R. López, “Evanescent States in Quantum Wires with Rashba Spin–orbit Coupling”, Phys. Rev. B, 76 (2007), 045339 | DOI

[24] S. I. Erlingsson, J. C. Egues, D. Loss, “Energy Spectra for Quantum Wires and Two-dimensional Electron Gases in Magnetic Fields with Rashba and Dresselhaus Spin–orbit Interactions”, Phys. Rev. B, 82 (2010), 155456 | DOI

[25] S. Debald, B. Kramer, “Rashba Effect and Magnetic Field in Semiconductor Quantum Wires”, Phys. Rev. B, 71 (2005), 115322 | DOI

[26] T. Biswas, T. K. Ghosh, “Electron–phonon Interaction in a Spin–orbit Coupled Quantum Wire with a Gap”, Semicond. Sci. Technol., 30 (2014), 015022 | DOI

[27] C. H. L. Quay, T. L. Hughes, et al., “Observation of a One-dimensional Spin–orbit Gap in a Quantum Wire”, Nat. Phys., 6 (2010), 336–339 | DOI

[28] R.G. Pereira, E. Miranda, “Magnetically Controlled Impurities in Quantum Wires with Strong Rashba Coupling”, Phys. Rev. B, 71 (2005), 085318 | DOI

[29] Y. Karaaslan, B. Gisi, et al., “Spin–orbit Interaction and Magnetic Field Effects on the Energy Dispersion of Double Quantum Wire”, Superlattices Microstruct., 85 (2015), 401–409 | DOI

[30] L. Serra, D. Sánchez, R. López, “Rashba Interaction in Quantum Wires with in-plane Magnetic Fields”, Phys. Rev. B, 72 (2005), 235309 | DOI

[31] T. L. Song, X. X. Liang, “Stark Effects on Bound Polarons in Polar Rectangular Quantum Wires”, J. Appl. Phys., 110 (2011), 063721 | DOI

[32] S. Zhang, R. Liang, et al., “Magnetosubbands of Semiconductor Quantum Wires with Rashba and Dresselhaus Spin–orbit Coupling”, Phys. Rev. B, 73 (2006), 155316 | DOI

[33] T.Y. Zhang, W. Zhao, X.-M. Liu, “Energy Dispersion of the Electrosubbands in Parabolic Confining Quantum Wires: Interplay of Rashba, Dresselhaus, Lateral Spin–orbit Interaction and the Zeeman Effect”, J. Phys. Condens. Matter, 21 (2009), 335501 | DOI

[34] J. F. Liu, Z. C. Zhong, et al., “Enhancement of Polarization in a Spin–orbit Coupling Quantum Wire with a Constriction”, Phys. Rev. B, 76 (2007), 195304 | DOI

[35] M. Governale, U. Zülicke, “Spin Accumulation in Quantum Wires with Strong Rashba Spin–orbit Coupling”, Phys. Rev. B, 66 (2002), 073311 | DOI

[36] H. C. Lee, S.-R. E. Yang, “Collective Excitation of Quantum Wires and Effect of Spin–orbit Coupling in the Presence of a Magnetic Field along the Wire”, Phys. Rev. B, 72 (2005), 245338 | DOI

[37] A. Vartanian, A. Kirakosyan, K. Vardanyan, “Fröhlich Polaron in Nanowire with Rashba and Dresselhaus Spin–orbit Couplings.”, Superlattices Microstruct, 109 (2017), 655–661 | DOI

[38] F. Mireles, G. Kirczenow, “Ballistic Spin-polarized Transport and Rashba Spin Precession in Semiconductor Nanowires”, Phys. Rev. B, 64 (2001), 024426 | DOI

[39] T. Schäpers, J. Knobbe, V. A. Guzenko, “Effect of Rashba Spin-orbit Coupling on Magnetotransport in InGaAs/InP Quantum Wire Structures”, Phys. Rev. B, 69 (2004), 235323 | DOI

[40] A. Vartanian, T. Ghukasyan, et al., “Simultaneous Effects of the Confinement of Polar Optical Phonons and Spin–orbit Coupling on the Free Carrier Absorption of a Nanowire”, Micro and Nanostructures, 168 (2022), 207287 | DOI

[41] H.-J. Xie, C.-Y. Chen, B.-K. Ma, “Bound Polaron in a Cylindrical Quantum Wire of a Polar Crystal”, Phys. Rev. B, 61 (2000), 4827–4834 | DOI