Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2022_56_3_a3, author = {T. K. Ghukasyan}, title = {Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {116--127}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/} }
TY - JOUR AU - T. K. Ghukasyan TI - Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2022 SP - 116 EP - 127 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/ LA - en ID - UZERU_2022_56_3_a3 ER -
%0 Journal Article %A T. K. Ghukasyan %T Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2022 %P 116-127 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/ %G en %F UZERU_2022_56_3_a3
T. K. Ghukasyan. Optical absorption in semiconductor nanowire mediated by electron-polar optical phonon and spin-orbit interactions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 3, pp. 116-127. http://geodesic.mathdoc.fr/item/UZERU_2022_56_3_a3/
[1] K. S. Bhargavi, S. Patil, S. S. Kubakaddi, J. Appl. Phys., 118 (2015), 044308 | DOI
[2] W. P. Dumke, “Quantum Theory of Free Carrier Absorption.”, Phys. Rev., 124 (1961), 1813–817 | DOI
[3] K. Seeger, Semiconductor Physics, Springer-Verlag, Berlin–Heidelberg, 2004, 538 pp. | DOI
[4] H. N. Spector, “Free-carrier Absorption in Quasi-two-dimensional Semiconducting Structures”, Phys. Rev. B, 983, 28 | DOI
[5] S. S. Kubakaddi, B. G. Mulimani, “Free-carrier Absorption in Semiconducting Quantum Well Wires”, J. Phys. C: Solid State Phys., 18 (1985), 6647–6652 | DOI
[6] H. Adamska, H. N. Spector, “Free-carrier Absorption from Electrons in Confined Systems”, J. Appl. Phys., 59 (1986), 619–626 | DOI
[7] C. C. Wu, C. J. Lin, “Free-carrier Absorption in $n$-type Piezoelectric Semiconductor Films”, J. Phys. Condens. Matter, 6 (1994), 10147–10158 | DOI
[8] Y. B. Yu, S. N. Zhu, K. X. Guo, “Electron–phonon Interaction Effect on Optical Absorption in Cylindrical Quantum Wires”, Solid State Commun., 139 (2006), 76–79 | DOI
[9] C. C. Wu, C. J. Lin, “Effect of Electron–phonon Scattering Mechanisms on Free-carrier Absorption in Quasi-one-dimensional Structures”, Physica B: Condens. Matter., 316—317 (2002), 346–349 | DOI
[10] H. Adamska, H. N. Spector, “Free Carrier Absorption in Quantum Well Structures for Polar Optical Phonon Scattering”, J. Appl. Phys., 56 (1984), 1123–1127 | DOI
[11] C. C. Wu, C.-J. Lin, “Free-carrier Absorption in $n$-type Gallium Arsenide Films for Polar Optical Phonon Scattering”, J. Appl. Phys., 79 (1996), 781–785 | DOI
[12] S. S. Kubakaddi, B. G. Mulimani, “Free-carrier Absorption in Quasi-two-dimensional Semiconducting Structures for Nonpolar Optical Phonon Scattering”, J. Appl. Phys., 58 (1985), 3640–3642 | DOI
[13] S. S. Kubakaddi, B. G. Mulimani, “Free-carrier Absorption in Semiconducting Quantum-well Wires for Nonpolar Optical-phonon Scattering”, J. Appl. Phys., 63 (1988), 1799–1801 | DOI
[14] D. Q. Khoa, L. T. T. Phuong, B. D. Hoi, “Nonlinear Absorption Coefficient and Optically Detected Electrophonon Resonance in Cylindrical {GaAs}/{AlAs} Quantum Wires with Different Confined Phonon Models”, Superlattices Microstruct, 103 (2017), 252–261 | DOI
[15] I. Žutić, J. Fabian, S. D. Sarma, “Spintronics: Fundamentals and Applications”, Rev. Mod. Phys., 76 (2004), 323–410 | DOI
[16] E. I. Rashba, Fiz. Tver. Tela (Leningrad), 2 (1960), 1224 (in Russian)
[17] J. Nitta, T. Akazaki, et al., “Gate Control of Spin–orbit Interaction in an Inverted In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As Heterostructure”, Phys. Rev. Lett., 78 (997), 1335–1338 | DOI
[18] D. Grundler, “Large Rashba Splitting in InAs Quantum Wells Due to Electron Wave Function Penetration into the Barrier Layers”, Phys. Rev. Lett., 84 (2000), 6074–6077 | DOI
[19] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, “Rashba Spin–orbit Coupling Probed by the Weak Antilocalization Analysis in InAlAs/InGaAs/InAlAs Quantum Wells as a Function of Quantum Well Asymmetry”, Phys. Rev. Lett., 89 (2002), 046801 | DOI
[20] S. Zhang, N. Tang, et al., “Generation of Rashba Spin–orbit Coupling in CdSe Nanowire by Ionic Liquid Gate”, Nano Letters, 15 (2015), 1152–1157 | DOI
[21] G. Dresselhaus, “Spin–orbit Coupling Effects in Zinc Blende Structures”, Phys. Rev., 100 (1955), 580–586 | DOI | Zbl
[22] J. Knobbe, T. Schäpers, “Magnetosubbands of Semiconductor Quantum Wires with Rashba Spin–orbit Coupling”, Phys. Rev. B, 71 (2005), 035311 | DOI
[23] L. Serra, D. Sánchez, R. López, “Evanescent States in Quantum Wires with Rashba Spin–orbit Coupling”, Phys. Rev. B, 76 (2007), 045339 | DOI
[24] S. I. Erlingsson, J. C. Egues, D. Loss, “Energy Spectra for Quantum Wires and Two-dimensional Electron Gases in Magnetic Fields with Rashba and Dresselhaus Spin–orbit Interactions”, Phys. Rev. B, 82 (2010), 155456 | DOI
[25] S. Debald, B. Kramer, “Rashba Effect and Magnetic Field in Semiconductor Quantum Wires”, Phys. Rev. B, 71 (2005), 115322 | DOI
[26] T. Biswas, T. K. Ghosh, “Electron–phonon Interaction in a Spin–orbit Coupled Quantum Wire with a Gap”, Semicond. Sci. Technol., 30 (2014), 015022 | DOI
[27] C. H. L. Quay, T. L. Hughes, et al., “Observation of a One-dimensional Spin–orbit Gap in a Quantum Wire”, Nat. Phys., 6 (2010), 336–339 | DOI
[28] R.G. Pereira, E. Miranda, “Magnetically Controlled Impurities in Quantum Wires with Strong Rashba Coupling”, Phys. Rev. B, 71 (2005), 085318 | DOI
[29] Y. Karaaslan, B. Gisi, et al., “Spin–orbit Interaction and Magnetic Field Effects on the Energy Dispersion of Double Quantum Wire”, Superlattices Microstruct., 85 (2015), 401–409 | DOI
[30] L. Serra, D. Sánchez, R. López, “Rashba Interaction in Quantum Wires with in-plane Magnetic Fields”, Phys. Rev. B, 72 (2005), 235309 | DOI
[31] T. L. Song, X. X. Liang, “Stark Effects on Bound Polarons in Polar Rectangular Quantum Wires”, J. Appl. Phys., 110 (2011), 063721 | DOI
[32] S. Zhang, R. Liang, et al., “Magnetosubbands of Semiconductor Quantum Wires with Rashba and Dresselhaus Spin–orbit Coupling”, Phys. Rev. B, 73 (2006), 155316 | DOI
[33] T.Y. Zhang, W. Zhao, X.-M. Liu, “Energy Dispersion of the Electrosubbands in Parabolic Confining Quantum Wires: Interplay of Rashba, Dresselhaus, Lateral Spin–orbit Interaction and the Zeeman Effect”, J. Phys. Condens. Matter, 21 (2009), 335501 | DOI
[34] J. F. Liu, Z. C. Zhong, et al., “Enhancement of Polarization in a Spin–orbit Coupling Quantum Wire with a Constriction”, Phys. Rev. B, 76 (2007), 195304 | DOI
[35] M. Governale, U. Zülicke, “Spin Accumulation in Quantum Wires with Strong Rashba Spin–orbit Coupling”, Phys. Rev. B, 66 (2002), 073311 | DOI
[36] H. C. Lee, S.-R. E. Yang, “Collective Excitation of Quantum Wires and Effect of Spin–orbit Coupling in the Presence of a Magnetic Field along the Wire”, Phys. Rev. B, 72 (2005), 245338 | DOI
[37] A. Vartanian, A. Kirakosyan, K. Vardanyan, “Fröhlich Polaron in Nanowire with Rashba and Dresselhaus Spin–orbit Couplings.”, Superlattices Microstruct, 109 (2017), 655–661 | DOI
[38] F. Mireles, G. Kirczenow, “Ballistic Spin-polarized Transport and Rashba Spin Precession in Semiconductor Nanowires”, Phys. Rev. B, 64 (2001), 024426 | DOI
[39] T. Schäpers, J. Knobbe, V. A. Guzenko, “Effect of Rashba Spin-orbit Coupling on Magnetotransport in InGaAs/InP Quantum Wire Structures”, Phys. Rev. B, 69 (2004), 235323 | DOI
[40] A. Vartanian, T. Ghukasyan, et al., “Simultaneous Effects of the Confinement of Polar Optical Phonons and Spin–orbit Coupling on the Free Carrier Absorption of a Nanowire”, Micro and Nanostructures, 168 (2022), 207287 | DOI
[41] H.-J. Xie, C.-Y. Chen, B.-K. Ma, “Bound Polaron in a Cylindrical Quantum Wire of a Polar Crystal”, Phys. Rev. B, 61 (2000), 4827–4834 | DOI