Powers of subsets in free periodic groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 43-48
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for every odd $n \ge 1039$ there are two words $u(x, y), v(x,y)$ of length $\le 2^{22}n^3$ over the group alphabet $\{x,y\}$ of the free Burnside group $B(2 ,n),$ which generate a free Burnside subgroup of the group $B(2,n)$. This implies that for any finite subset $S$ of the group $B(m,n)$ the inequality $|S^t|>4\cdot 2.9^{[\frac{t}{2^{22}s^3}]}$ holds, where $s$ is the smallest odd divisor of $n$ that satisfies the inequality $s \ge 1039$.
Keywords:
power of subset, product of subset, Burnside group.
@article{UZERU_2022_56_2_a0,
author = {V. S. Atabekyan and H. T. Aslanyan and S. T. Aslanyan},
title = {Powers of subsets in free periodic groups},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {43--48},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/}
}
TY - JOUR AU - V. S. Atabekyan AU - H. T. Aslanyan AU - S. T. Aslanyan TI - Powers of subsets in free periodic groups JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2022 SP - 43 EP - 48 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/ LA - en ID - UZERU_2022_56_2_a0 ER -
%0 Journal Article %A V. S. Atabekyan %A H. T. Aslanyan %A S. T. Aslanyan %T Powers of subsets in free periodic groups %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2022 %P 43-48 %V 56 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/ %G en %F UZERU_2022_56_2_a0
V. S. Atabekyan; H. T. Aslanyan; S. T. Aslanyan. Powers of subsets in free periodic groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 43-48. http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/