Powers of subsets in free periodic groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 43-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every odd $n \ge 1039$ there are two words $u(x, y), v(x,y)$ of length $\le 2^{22}n^3$ over the group alphabet $\{x,y\}$ of the free Burnside group $B(2 ,n),$ which generate a free Burnside subgroup of the group $B(2,n)$. This implies that for any finite subset $S$ of the group $B(m,n)$ the inequality $|S^t|>4\cdot 2.9^{[\frac{t}{2^{22}s^3}]}$ holds, where $s$ is the smallest odd divisor of $n$ that satisfies the inequality $s \ge 1039$.
Keywords: power of subset, product of subset, Burnside group.
@article{UZERU_2022_56_2_a0,
     author = {V. S. Atabekyan and H. T. Aslanyan and S. T. Aslanyan},
     title = {Powers of  subsets in  free periodic groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {43--48},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
AU  - H. T. Aslanyan
AU  - S. T. Aslanyan
TI  - Powers of  subsets in  free periodic groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2022
SP  - 43
EP  - 48
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/
LA  - en
ID  - UZERU_2022_56_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%A H. T. Aslanyan
%A S. T. Aslanyan
%T Powers of  subsets in  free periodic groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2022
%P 43-48
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/
%G en
%F UZERU_2022_56_2_a0
V. S. Atabekyan; H. T. Aslanyan; S. T. Aslanyan. Powers of  subsets in  free periodic groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 56 (2022) no. 2, pp. 43-48. http://geodesic.mathdoc.fr/item/UZERU_2022_56_2_a0/

[1] M.-Ch. Chang, “Product Theorems in SL$_2$ and SL$_3$”, J. Inst. Math. Jussieu, 7:1 (2008), 1–25 | DOI | MR | Zbl

[2] S. R. Safin, “Powers of Subsets of Free Groups”, Mat. Sb., 202 (2011), 97–102 | DOI | MR | Zbl

[3] A. A. Razborov, “A product Theorem in Free Groups”, Ann. of Math., 179:2 (2014), 405–429 | DOI | MR | Zbl

[4] T. Terence, V. Van, “Additive Combinatorics”, Cambridge Studies in Advanced Mathematics, v. 105, Cambridge University Press, Cambridge, 2006 | MR

[5] S. I. Adian, The Burnside Problem and Identities in Groups, Ergeb. Math. Grenzgeb., 95, Springer, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[6] Izv. Math., 39 (1992), 905–957 (in English) | DOI | MR | Zbl

[7] Izv. Math., 73 (2009), 861–892 (in English) | DOI | DOI | MR | Zbl

[8] Math. Notes, 85 (2009), 496–502 (in English) | DOI | DOI | MR | Zbl | Zbl

[9] Math. Notes, 86 (in English) | DOI | DOI | MR | Zbl