Analogue of the Abraham–Minkowski controversy in electronic optics
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 3, pp. 169-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of electron diffraction by a standing light wave (the Kapitza–Dirac effect), an electronic refractive index can be defined as the ratio of electron momenta in the wave field and outside it. Moreover, both kinetic and canonical electron momenta can be used for this purpose, which corresponds to the Abraham–Minkowski controversy in photonic optics. It is shown that in both cases the same expression for the electronic refractive index is obtained. This is consistent with Barnett's resolution of the Abraham–Minkowski dilemma.
Keywords: Kapitza–Dirac effect, electron optics, Abraham–Minkowski dilemma, Barnett’s resolution.
@article{UZERU_2021_55_3_a2,
     author = {K. K. Grigoryan},
     title = {Analogue of the {Abraham{\textendash}Minkowski} controversy in electronic optics},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {169--173},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a2/}
}
TY  - JOUR
AU  - K. K. Grigoryan
TI  - Analogue of the Abraham–Minkowski controversy in electronic optics
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 169
EP  - 173
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a2/
LA  - en
ID  - UZERU_2021_55_3_a2
ER  - 
%0 Journal Article
%A K. K. Grigoryan
%T Analogue of the Abraham–Minkowski controversy in electronic optics
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 169-173
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a2/
%G en
%F UZERU_2021_55_3_a2
K. K. Grigoryan. Analogue of the Abraham–Minkowski controversy in electronic optics. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 3, pp. 169-173. http://geodesic.mathdoc.fr/item/UZERU_2021_55_3_a2/

[1] V. L. Ginzburg, Theoretical physics and astrophysics, ch. VIII, Pergamon Press Ltd, Oxford, 1979, 171 | DOI | MR

[2] R. N. C. Pfeifer et al., “Momentum of an Electromagnetic Wave in Dielectric Media”, Rev. Mod. Phys., 79 (2007), 1197 | DOI

[3] I. Brevik, “Experiments in Phenomenological Electrodynamics and the Electromagnetic Energy-Momentum Tensor”, Phys. Rep., 52 (1979), 133–201 | DOI

[4] S. M. Barnett, “Resolution of the Abraham–Minkowski Dilemma”, Phys. Rev. Lett., 104 (2010), 070401, 1–4 | DOI

[5] V. P. Makarov, A. A. Rukhadze, “Force on Matter in an Electromagnetic Field”, Phys. Usp., 52 (2009), 937 | DOI

[6] V. L. Ginzburg, V. A. Ugarov, “Remarks on Forces and the Energy–Momentum Tensor in Macroscopic Electrodynamics”, Sov. Phys. Usp., 19 (1976), 94 | DOI | MR

[7] M. Abraham, “Zur Elektrodynamik Bewegter Körper”, Rend. Circ. Matem. Palermo, 28 (1909), 1–28 | DOI | MR | Zbl

[8] M. Abraham, “SulL’elettrodinamica di Minkowski”, Rend. Circ. Matem. Palermo, 30 (1910), 33–46 | DOI | Zbl

[9] H. Minkowski, “Die Grundlagen für die elektromagnetischen Vorgënge in bewegten Körpern”, Nachr. König. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1908, 53–111 | MR | Zbl

[10] I. Brevik, “Electromagnetic Energy–Momentum Tensor within Material Media”, Mat. Phys. Medd. Dan. Vid. Selsc., 13 (1970), 1–79

[11] K. K. Grigoryan, “Momentum of an electromagnetic wave in time-varying dielectric media”, Proc. YSU A: Phys. Math. Sci., 55:2 (2021), 148–152 | DOI | MR

[12] P. L. Kapitza, P. A. M. Dirac, “The Reflection of Electrons from Standing Light Waves”, Math. Proc. Cambr. Phil. Soc., 29 (1933), 297 | DOI

[13] C. Davisson, L. H. Germer, “The Scattering of Electrons by a Single Crystal of Nickel”, Nature, 119 (1927), 558–560 | DOI

[14] D. L. Freimund, K. Aflatooni, H. Batelaan, “Observation of the Kapitza–Dirac Effect”, Nature, 413 (2001), 142–143 | DOI

[15] H. Batelaan, “The Kapitza–Dirac Effect”, Contemp. Phys., 41 (2000), 369–381 | DOI

[16] H. Batelaan, “Illuminating the Kapitza–Dirac Effect with Electron Matter Optics”, Rev. Mod. Phys, 79 (2007), 929–941 | DOI

[17] F. Ehlotzky, Ch. Leubner, “Elementary Theory of the Kapitza–Dirac Effect”, Opt. Commun., 10 (1974), 175–180 | DOI

[18] A. G. Hayrapetyan, K. K. Grigoryan, J. B. Götte, R. G. Petrosyan, “Kapitza–DiracEffect with Traveling Waves”, New J. Phys., 17 (2015) | DOI | DOI | Zbl

[19] H. K. Avetissian, “Diffraction of Electrons on the Travelling Electromagnetic Wave”, Phys. Lett. A, 58 (1976), 144–146 | DOI