Interval edge-colorings of trees with restrictions on the edges
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 2, pp. 113-122
Voir la notice de l'article provenant de la source Math-Net.Ru
An edge-coloring of a graph $G$ with consecutive integers $c_1,\ldots,c_t$ is called an interval $t$-coloring, if all colors are used, and the colors of edges incident to any vertex of $G$ are distinct and form an interval of integers. A graph $G$ is interval colorable, if it has an interval $t$-coloring for some positive integer $t$. In this paper, we consider the case, where there are restrictions on the edges of the tree and provide a polynomial algorithm for checking interval colorability that satisfies those restrictions.
Keywords:
trees, interval $t$-coloring, interval edge-coloring, restrictions on edges, dynamic programming, bipartite matching.
@article{UZERU_2021_55_2_a1,
author = {A. Kh. Sahakyan and R. R. Kamalian},
title = {Interval edge-colorings of trees with restrictions on the edges},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {113--122},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/}
}
TY - JOUR AU - A. Kh. Sahakyan AU - R. R. Kamalian TI - Interval edge-colorings of trees with restrictions on the edges JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2021 SP - 113 EP - 122 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/ LA - en ID - UZERU_2021_55_2_a1 ER -
%0 Journal Article %A A. Kh. Sahakyan %A R. R. Kamalian %T Interval edge-colorings of trees with restrictions on the edges %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2021 %P 113-122 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/ %G en %F UZERU_2021_55_2_a1
A. Kh. Sahakyan; R. R. Kamalian. Interval edge-colorings of trees with restrictions on the edges. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 2, pp. 113-122. http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/