Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2021_55_2_a1, author = {A. Kh. Sahakyan and R. R. Kamalian}, title = {Interval edge-colorings of trees with restrictions on the edges}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {113--122}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/} }
TY - JOUR AU - A. Kh. Sahakyan AU - R. R. Kamalian TI - Interval edge-colorings of trees with restrictions on the edges JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2021 SP - 113 EP - 122 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/ LA - en ID - UZERU_2021_55_2_a1 ER -
%0 Journal Article %A A. Kh. Sahakyan %A R. R. Kamalian %T Interval edge-colorings of trees with restrictions on the edges %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2021 %P 113-122 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/ %G en %F UZERU_2021_55_2_a1
A. Kh. Sahakyan; R. R. Kamalian. Interval edge-colorings of trees with restrictions on the edges. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 2, pp. 113-122. http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a1/
[1] D. B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996 | MR | Zbl
[2] A. S. Asratian, R. R. Kamalian, “Interval colorings of edges of a multigraph”, Appl. Math., 5, Yerevan State University, 1987, 25–34 (in Russian) | MR
[3] R. R. Kamalian, Interval Colorings of Complete Bipartite Graphs and Trees, Preprint, The Computing Centre of the Academy of Sciences of Armenia, Yerevan, 1989 (in Russian)
[4] R. R. Kamalian, Interval Edge Colorings of Graphs, Doctoral dissertation, The Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990 (in Russian)
[5] M. A. Axenovich, “On Interval Colorings of Planar Graphs”, Congr. Numer., 159 (2002), 77–94 | MR | Zbl
[6] R. R. Kamalian, P. A Petrosyan, “A Note on Interval Edge-Colorings of Graphs”, Congr. Numer., 36 (2012), 13–16
[7] P. A. Petrosyan, “Interval Edge-Colorings of Complete Graphs and $n$-Dimensional Cubes”, Discrete Math., 310 (2010), 1580–1587 | DOI | MR | Zbl
[8] P. A. Petrosyan, H. H. Khachatrian, H. G. Tananyan, “Interval Edge-Colorings of Cartesian Products of Graphs I”, Discuss. Math. Graph Theory, 33 (2013), 613–632 | DOI | MR | Zbl
[9] H. H. Khachatrian, P. A. Petrosyan, “Interval Edge-Colorings of Complete Graphs”, Discrete Math., 339 (2016), 2249–2262 | DOI | MR | Zbl
[10] R. R. Kamalian, P. A. Petrosyan, “On Lower Bound for $W(K_{2n})$”, Mathematical Problems of Computer Science, 23 (2004), 127–129
[11] R. R. Kamalian, P. A. Petrosyan, “On Interval Edg-Colorings of Harary Graphs $H_{2n-2, 2n}$”, Mathematical Problems of Computer Science, 24 (2005), 86–88
[12] R. R. Kamalian, P. A. Petrosyan, “On Interval Colorings of Complete $k$-partite Graphs $K_n^k$”, Mathematical Problems of Computer Science, 26 (2007), 28–32
[13] P. Erdős, A. L. Rubin, H. Taylor, “Choosability in Graphs”, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congress. Numer., 26, 1980, 125–157 | MR | Zbl
[14] V. G. Vizing, “Coloring the Vertices of a Graph in Prescribed Colors”, Diskret. Analiz, Novosibirsk, 29 (1976), 3–10 | MR | Zbl
[15] Y. Caro, J. Schönheim, “Generalized $1$-factorization of Trees”, Discrete Math., 33 (1981), 319–321 | DOI | MR | Zbl
[16] S. Even, A. Itai, A. Shamir, “On the Complexity of Timetable and Multicommodity Flow Problems”, SIAM J. Comput., 5:4 (1976), 691–703 | DOI | MR | Zbl
[17] R. M. Karp, “Reducibility among Combinatorial Problems”, Complexity of Computer Computations, R.E. Miller and J.W. Thatcher, Plenum Press, New York, 1972, 85–103 | Zbl
[18] S. A. Cook, “The Complexity of Theorem-proving Procedures”, Proceedings of the Third Annual ACM Symposium on Theory of Computing, 1971, 151–158 | Zbl
[19] A. S. Asratian, Investigation of Some Mathematical Model of Scheduling Theory, Doctoral Dissertation, MGU, M., 1980 (in Russian)
[20] H. W. Kuhn, “The Hungarian Method for the Assignment Problem”, Journal of the Optical Society of America A, 2:1-2 (1955), 83–97 | MR | Zbl