Locally-balanced $k$-partitions of graphs
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 2, pp. 96-112

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we generalize locally-balanced $2$-partitions of graphs and introduce a new notion, the locally-balanced $k$-partitions of graphs, defined as follows: a $k$-partition of a graph $G$ is a surjection $f:V(G)\rightarrow \{0,1,\ldots,k-1\}$. A $k$-partition ($k\geq 2$) $f$ of a graph $G$ is a locally-balanced with an open neighborhood, if for every $v\in V(G)$ and any $0\leq i$ $$\left\vert \vert \{u\in N_{G}(v)\colon\,f(u)=i\}\vert - \vert \{u\in N_{G}(v)\colon\,f(u)=j\}\vert \right\vert\leq 1.$$ A $k$-partition ($k\geq 2$) $f^{\prime}$ of a graph $G$ is a locally-balanced with a closed neighborhood, if for every $v\in V(G)$ and any $0\leq i$ $$\left\vert \vert \{u\in N_{G}[v]\colon\,f^{\prime}(u)=i\}\vert - \vert \{u\in N_{G}[v]\colon\,f^{\prime}(u)=j\}\vert \right\vert\leq 1.$$ The minimum number $k$ ($k\geq 2$), for which a graph $G$ has a locally-balanced $k$-partition with an open (a closed) neighborhood, is called an $lb$-open ($lb$-closed) chromatic number of $G$ and denoted by $\chi_{(lb)}(G)$ ($\chi_{[lb]}(G)$). In this paper we determine or bound the $lb$-open and $lb$-closed chromatic numbers of several families of graphs. We also consider the connections of $lb$-open and $lb$-closed chromatic numbers of graphs with other chromatic numbers such as injective and $2$-distance chromatic numbers.
@article{UZERU_2021_55_2_a0,
     author = {A. H. Gharibyan and P. A. Petrosyan},
     title = {Locally-balanced $k$-partitions of graphs},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {96--112},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a0/}
}
TY  - JOUR
AU  - A. H. Gharibyan
AU  - P. A. Petrosyan
TI  - Locally-balanced $k$-partitions of graphs
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 96
EP  - 112
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a0/
LA  - en
ID  - UZERU_2021_55_2_a0
ER  - 
%0 Journal Article
%A A. H. Gharibyan
%A P. A. Petrosyan
%T Locally-balanced $k$-partitions of graphs
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 96-112
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a0/
%G en
%F UZERU_2021_55_2_a0
A. H. Gharibyan; P. A. Petrosyan. Locally-balanced $k$-partitions of graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 2, pp. 96-112. http://geodesic.mathdoc.fr/item/UZERU_2021_55_2_a0/