On $n$-node lines in $GC_n$ sets
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 44-55

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-poised node set $\mathcal {X}$ in the plane is called $GC_n$ set, if the fundamental polynomial of each node is a product of linear factors. A line is called $k$-node line, if it passes through exactly $k$-nodes of $\mathcal {X}$ At most $n+1$ nodes can be collinear in $\mathcal {X}$ set and an $(n+1)$-node line is called maximal line. The well-known conjecture of M. Gasca and J.I. Maeztu states that every $GC_n$ set has a maximal line. Until now the conjecture has been proved only for the cases $n \le 5.$ In this paper we prove some results concerning $n$-node lines, assuming that the Gasca–Maeztu conjecture is true.
Keywords: $n$-poised set, $GC_n$ set
Mots-clés : polynomial interpolation, Gasca–Maeztu conjecture, maximal line, $n$-node line.
@article{UZERU_2021_55_1_a5,
     author = {G. K. Vardanyan},
     title = {On $n$-node lines in $GC_n$ sets},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/}
}
TY  - JOUR
AU  - G. K. Vardanyan
TI  - On $n$-node lines in $GC_n$ sets
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 44
EP  - 55
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/
LA  - en
ID  - UZERU_2021_55_1_a5
ER  - 
%0 Journal Article
%A G. K. Vardanyan
%T On $n$-node lines in $GC_n$ sets
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 44-55
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/
%G en
%F UZERU_2021_55_1_a5
G. K. Vardanyan. On $n$-node lines in $GC_n$ sets. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/