Mots-clés : polynomial interpolation, Gasca–Maeztu conjecture, maximal line, $n$-node line.
@article{UZERU_2021_55_1_a5,
author = {G. K. Vardanyan},
title = {On $n$-node lines in $GC_n$ sets},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {44--55},
year = {2021},
volume = {55},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/}
}
G. K. Vardanyan. On $n$-node lines in $GC_n$ sets. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/
[1] K. C. Chung, T. H. Yao, “On latticies Admitting Unique Lagrange Representations”, SIAM J. Numer. Anal., 14 (1977), 735–753 | DOI | MR
[2] H. Hakopian, N. Vardanyan, “On Basic Properties of $GC_n$ Sets”, Journal of Knot Theory and its Ramifications, 29 (2020), 1–26 | DOI | MR
[3] J. M. Carnicer, M. Gasca, “Planar Configurations with Simple Lagrange Formula”, Mathematical Methods in CAGD (Oslo, 2000), Vanderbilt University Press, Nashville, TN, 2001, 55–62 | MR
[4] J. M. Carnicer, M. Gasca, “On Chung and Yao's Geometric Characterization for Bivariate Polynomial Interpolation”, Curve and Surface Design, Nashboro Press, Brentwood, 2002, 21–30 | MR
[5] M. Gasca, J. I. Maeztu, “On Lagrange and Hermite Interpolation in $\mathbb{R}^k $”, Numer. Math., 39 (1982), 1–14 | DOI | MR | Zbl
[6] J. R. Busch, “A Note on Lagrange Interpolation in $\mathbb{R}^2$”, Rev. Un. Mat. Argentina, 36 (1990), 33–38 | MR | Zbl
[7] H. Hakopian, K. Jetter, G. Zimmermann, “The Gasca-Maeztu Conjecture for $n=5$”, Numer. Math., 127 (2014), 685–713 | DOI | MR | Zbl
[8] J. M. Carnicer, C. Godés, “Configurations of Nodes with Defects Greater Than Three”, J. Comput. Appl. Math., 233 (2010), 1640–1648 | DOI | MR | Zbl
[9] H. Hakopian, V. Vardanyan, “On a Correction of a Property of $GC_n$ Sets”, Adv. Comput. Math., 45 (2019), 311–325 | DOI | MR | Zbl