On $n$-node lines in $GC_n$ sets
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-poised node set $\mathcal {X}$ in the plane is called $GC_n$ set, if the fundamental polynomial of each node is a product of linear factors. A line is called $k$-node line, if it passes through exactly $k$-nodes of $\mathcal {X}$ At most $n+1$ nodes can be collinear in $\mathcal {X}$ set and an $(n+1)$-node line is called maximal line. The well-known conjecture of M. Gasca and J.I. Maeztu states that every $GC_n$ set has a maximal line. Until now the conjecture has been proved only for the cases $n \le 5.$ In this paper we prove some results concerning $n$-node lines, assuming that the Gasca–Maeztu conjecture is true.
Keywords: $n$-poised set, $GC_n$ set
Mots-clés : polynomial interpolation, Gasca–Maeztu conjecture, maximal line, $n$-node line.
@article{UZERU_2021_55_1_a5,
     author = {G. K. Vardanyan},
     title = {On $n$-node lines in $GC_n$ sets},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/}
}
TY  - JOUR
AU  - G. K. Vardanyan
TI  - On $n$-node lines in $GC_n$ sets
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 44
EP  - 55
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/
LA  - en
ID  - UZERU_2021_55_1_a5
ER  - 
%0 Journal Article
%A G. K. Vardanyan
%T On $n$-node lines in $GC_n$ sets
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 44-55
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/
%G en
%F UZERU_2021_55_1_a5
G. K. Vardanyan. On $n$-node lines in $GC_n$ sets. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a5/

[1] K. C. Chung, T. H. Yao, “On latticies Admitting Unique Lagrange Representations”, SIAM J. Numer. Anal., 14 (1977), 735–753 | DOI | MR

[2] H. Hakopian, N. Vardanyan, “On Basic Properties of $GC_n$ Sets”, Journal of Knot Theory and its Ramifications, 29 (2020), 1–26 | DOI | MR

[3] J. M. Carnicer, M. Gasca, “Planar Configurations with Simple Lagrange Formula”, Mathematical Methods in CAGD (Oslo, 2000), Vanderbilt University Press, Nashville, TN, 2001, 55–62 | MR

[4] J. M. Carnicer, M. Gasca, “On Chung and Yao's Geometric Characterization for Bivariate Polynomial Interpolation”, Curve and Surface Design, Nashboro Press, Brentwood, 2002, 21–30 | MR

[5] M. Gasca, J. I. Maeztu, “On Lagrange and Hermite Interpolation in $\mathbb{R}^k $”, Numer. Math., 39 (1982), 1–14 | DOI | MR | Zbl

[6] J. R. Busch, “A Note on Lagrange Interpolation in $\mathbb{R}^2$”, Rev. Un. Mat. Argentina, 36 (1990), 33–38 | MR | Zbl

[7] H. Hakopian, K. Jetter, G. Zimmermann, “The Gasca-Maeztu Conjecture for $n=5$”, Numer. Math., 127 (2014), 685–713 | DOI | MR | Zbl

[8] J. M. Carnicer, C. Godés, “Configurations of Nodes with Defects Greater Than Three”, J. Comput. Appl. Math., 233 (2010), 1640–1648 | DOI | MR | Zbl

[9] H. Hakopian, V. Vardanyan, “On a Correction of a Property of $GC_n$ Sets”, Adv. Comput. Math., 45 (2019), 311–325 | DOI | MR | Zbl