Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2021_55_1_a4, author = {K. S. Smbatyan}, title = {Two results on the palette index of graphs}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {36--43}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a4/} }
TY - JOUR AU - K. S. Smbatyan TI - Two results on the palette index of graphs JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2021 SP - 36 EP - 43 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a4/ LA - en ID - UZERU_2021_55_1_a4 ER -
K. S. Smbatyan. Two results on the palette index of graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 36-43. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a4/
[1] D. B. West, Introduction to Graph Theory, Prentice-Hall, N.J., 2001 | MR | Zbl
[2] V. Vizing, “On an Estimate of the Chromatic Class of a $p$-Graph”, Diskretny Analiz, 3 (1964), 25–30 (in Russian) | MR
[3] M. Hornak, R. Kalinowski, M. Meszka, M. Wozniak, “Minimum Number of Palettes in Edge Colorings”, Graphs Combin., 30:3 (2014), 619–626 | DOI | MR | Zbl
[4] C. J. Casselgren, P. A. Petrosyan, “Some Results on the Palette Index of Graphs”, Discrete Mathematics and Theoretical Computer Science, 2019 | DOI | MR
[5] S. Bonvicini, G. Mazzuoccolo, “Edge-Colorings of 4-Regular Graphs with the Minimum Number of Palettes”, Graphs Combin., 32 (2016), 1293–1311 | DOI | MR | Zbl
[6] I. Holyer, “The NP-completeness of Some Edge-partition Problems”, SIAM J. Comput., 10 (1981), 718–720 | DOI | MR | Zbl
[7] J. Akiyama, M. Kano, Factors and Factorizations of Graphs. Proof Techniques in Factor Theory, Lect. Notes Math., 2031, Springer—Verlag, Berlin, Heidelberg, 2011, 353 pp. | DOI | MR | Zbl
[8] R. Hammack, W. Imrich, S.Klavžar, Handbook of Product Graphs, 2nd ed., CRC Press: Taylor and Francis Group, 2011 | MR | Zbl