On weighted solutions of $\overline{\partial}$-equation in the unit disc
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an equation $\partial g(z)/\partial \overline{z} = v(z)$ is considered in the unit disc $\mathbb{D}$. For $C^k$-functions $v$ $(k = 1,2,3,\dots, \infty)$ from weighted $L^p$-classes $(1 \leq p \infty)$ with weight functions of the type $|z|^{2\gamma} (1-|z|^{2\rho})^{\alpha}$, $z \in \mathbb{D}$, a family $g_{\beta}$ of solutions is constructed ($\beta$ is a complex parameter).
Keywords: $\overline{\partial}$-equation, weighted function spaces.
@article{UZERU_2021_55_1_a2,
     author = {F. V. Hayrapetyan},
     title = {On weighted solutions of $\overline{\partial}$-equation in the unit disc},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/}
}
TY  - JOUR
AU  - F. V. Hayrapetyan
TI  - On weighted solutions of $\overline{\partial}$-equation in the unit disc
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 20
EP  - 28
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/
LA  - en
ID  - UZERU_2021_55_1_a2
ER  - 
%0 Journal Article
%A F. V. Hayrapetyan
%T On weighted solutions of $\overline{\partial}$-equation in the unit disc
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 20-28
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/
%G en
%F UZERU_2021_55_1_a2
F. V. Hayrapetyan. On weighted solutions of $\overline{\partial}$-equation in the unit disc. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/

[1] D. Pompeiju, “Sur Les Singularities des Fonctions Analytiques Uniformes”, C. R. Acad. Sci. Paris, 139 (1904), 914–91

[2] L. Hörmander, Vedenie v Teoriu Funkciy Neskolkikh Kompleksnikh Peremennikh, Mir, M., 1967, 280 pp. (in Russian)

[3] U. Rudin, Teoriya Funkciy v Edinichnom Share iz $\mathbb{C}^n$, Mir, M., 1984, 456 pp. (in Russian) | MR

[4] G. M. Henkin, J. Leiterer, Theory of Functions on Complex Manifolds, Akademie-Verlag, Basel-Boston-Stuttgart, 1984 | MR | Zbl

[5] Ph. Charpentier, “Formules explicites pour les solutions minimales del equation $\overline{\partial}u=f$ dans la boule et dans le polydisque de $C^n$”, Ann. Inst. Fourier, 30:4 (1980), 121–154 | DOI | MR | Zbl

[6] M. M. Djrbashian, “On Canonical Representation of Functions Meromorphic in the Unit Disc”, DAN Arm. SSR, 3:1 (1945), 3–9 (in Russian)

[7] M. M. Djrbashian, “On the representation problem of analytic functions”, Soob. Inst. Mat. i Mekh. AN ArmSSR, 2 (1948), 3–40 (in Russian)

[8] A. H. Karapetyan, “Weighted $\overline{\partial}$-integral Representations in Matrix Domains”, Complex Var. Ell. Eq., 53:12 (2008), 1131–1168 | DOI | MR | Zbl

[9] A. H. Karapetyan, “Weighted $\overline{\partial}$-integral Representations of Smooth Functions in the Unit Ball of $C^n$”, Complex Var. Ell. Eq., 58:5 (2013), 665–683 | DOI | MR | Zbl

[10] M. M. Djrbashian, “Weighted Integral Representations of Smooth or Holomorphic Functions in the Unit Disc and in the Complex Plane”, J. Contemp. Math. Analysis, 28 (1993), 1–27 | MR | Zbl

[11] A. I. Petrosyan, “An Integral Representation of Functions in the Polydisc and in the Space $\mathbb{C}^n$”, Collection of Works of International Conference “Theory of Functions and Applications” Dedicated to the Memory of Mkhitar M. Djrbashian, Yer., 1995, 153–157

[12] A. I. Petrosyan, “The Weighted Integral Representations of Functions in the Polydisc and in the Space $C^n$”, J. Contemp. Math. Analysis, 31:1 (1996), 38–50 | MR | Zbl

[13] F. V. Hayrapetyan, “On a Family of Weighted $\overline{\partial}$-integral Representations in the Unit Disc”, Arm. J. Math., 12:11 (2020), 1–16 | MR

[14] F. V. Hayrapetyan, “Weighted Integral Representations of Holomorphic Functions in the Unit Disc by Means of Mittag-Leffler Type Kernels”, Proc. NAS RA Math., 55:4 (2020), 15—30 | MR | Zbl