On weighted solutions of $\overline{\partial}$-equation in the unit disc
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 20-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper an equation $\partial g(z)/\partial \overline{z} = v(z)$ is considered in the unit disc $\mathbb{D}$. For $C^k$-functions $v$ $(k = 1,2,3,\dots, \infty)$ from weighted $L^p$-classes $(1 \leq p \infty)$ with weight functions of the type $|z|^{2\gamma} (1-|z|^{2\rho})^{\alpha}$, $z \in \mathbb{D}$, a family $g_{\beta}$ of solutions is constructed ($\beta$ is a complex parameter).
Keywords:
$\overline{\partial}$-equation, weighted function spaces.
@article{UZERU_2021_55_1_a2,
author = {F. V. Hayrapetyan},
title = {On weighted solutions of $\overline{\partial}$-equation in the unit disc},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {20--28},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/}
}
TY - JOUR
AU - F. V. Hayrapetyan
TI - On weighted solutions of $\overline{\partial}$-equation in the unit disc
JO - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY - 2021
SP - 20
EP - 28
VL - 55
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/
LA - en
ID - UZERU_2021_55_1_a2
ER -
%0 Journal Article
%A F. V. Hayrapetyan
%T On weighted solutions of $\overline{\partial}$-equation in the unit disc
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 20-28
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/
%G en
%F UZERU_2021_55_1_a2
F. V. Hayrapetyan. On weighted solutions of $\overline{\partial}$-equation in the unit disc. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/