On weighted solutions of $\overline{\partial}$-equation in the unit disc
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 20-28

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an equation $\partial g(z)/\partial \overline{z} = v(z)$ is considered in the unit disc $\mathbb{D}$. For $C^k$-functions $v$ $(k = 1,2,3,\dots, \infty)$ from weighted $L^p$-classes $(1 \leq p \infty)$ with weight functions of the type $|z|^{2\gamma} (1-|z|^{2\rho})^{\alpha}$, $z \in \mathbb{D}$, a family $g_{\beta}$ of solutions is constructed ($\beta$ is a complex parameter).
Keywords: $\overline{\partial}$-equation, weighted function spaces.
@article{UZERU_2021_55_1_a2,
     author = {F. V. Hayrapetyan},
     title = {On weighted solutions of $\overline{\partial}$-equation in the unit disc},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/}
}
TY  - JOUR
AU  - F. V. Hayrapetyan
TI  - On weighted solutions of $\overline{\partial}$-equation in the unit disc
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2021
SP  - 20
EP  - 28
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/
LA  - en
ID  - UZERU_2021_55_1_a2
ER  - 
%0 Journal Article
%A F. V. Hayrapetyan
%T On weighted solutions of $\overline{\partial}$-equation in the unit disc
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2021
%P 20-28
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/
%G en
%F UZERU_2021_55_1_a2
F. V. Hayrapetyan. On weighted solutions of $\overline{\partial}$-equation in the unit disc. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 55 (2021) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/UZERU_2021_55_1_a2/